Логика мышления. Часть 11. Динамические нейронные сети. Ассоциативность
Этот цикл статей описывает волновую модель мозга, серьезно отличающуюся от традиционных моделей. Настоятельно рекомендую тем, кто только присоединился, начинать чтение с первой части. Наиболее просты для понимания и моделирования нейронные сети, в которых информация последовательно распространяется от слоя к слою. Подав сигнал на вход, можно так же последовательно рассчитать состояние каждого из слоев. Эти состояния можно трактовать как набор описаний входного сигнала. Пока не изменится входной сигнал, останется неизменным и его описание. Более сложная ситуация возникает, если ввести в нейронную сеть обратные связи. Чтобы рассчитать состояние такой сети, уже недостаточно одного прохода. Как только мы изменим состояние сети в соответствии с входным сигналом, обратные связи изменят входную картину, что потребует нового пересчета состояния всей сети, и так далее. Идеология рекуррентной сети зависит от того, как соотносится задержка обратной связи и интервал смены образов. Если задержка много меньше интервала смены, то нас, скорее всего, интересуют только конечные равновесные состояния, и промежуточные итерации стоит воспринимать, как исключительно расчетную процедуру. Если же они сопоставимы, то на первый план выходит именно динамика сети.Читать дальше →