LIGO: линейка точность в 1/10000 диаметра протона
Нобелевская премия по физике за 2017 год ожидаемо досталась Кипу Торну, Райнеру Вайссу и Берри Беришу за экспериментальное обнаружение гравитационных волн на лазерно-интерферометрических приборах LIGO. Этот успех (а обнаружение гравитационных волн (ГВ) от двух сливающихся черных дыр первый раз произошло 14 сентября 2015 года) стал плодом примерно 50-летнего развития техники для детектирования ГВ. В результате этого развития инструмент LIGO обладает леденящими характеристиками, впрочем, никакие человеческие эпитеты не передают уровня прецизионности этой машины.
Лазерно-интерферометрическая гравитационная обсерватория LIGO в Ливингстоне, Луизиана, США.
Сегодня поговорим об инженерном устройстве LIGO. Но прежде — о гравитационных волнах вообще.
Гравитационную волну излучает любая материя, движущаяся с асимметричным ускорением. Для возникновения волны существенной амплитуды необходимы чрезвычайно большая масса излучателя или/и огромные ускорения, так как амплитуда гравитационной волны прямо пропорциональна первой производной ускорения и массе генератора. Какие-то значимые мощности ГВ-излучения получаются в основном от сливающихся черных дыр и нейтронных звезд, а также во время асимметричных взрывов сверхновых звезд, при этом идеальный вариант — пара черных дыр, вращающихся вокруг друг друга на очень тесной орбите. Для вращающихся пар частота излучаемых гравитационных волн равна удвоенной частоте обращения системы двух тел. Для наиболее часто встречающихся во Вселенной событий, сопровождающихся излучением ГВ, характерны частоты от долей герца до сотен герц, а значит длины волн от от сотен до миллионов километров.
Симуляция излучения гравитационных волн сливающейся парой черных дыр.
Характерный паттерн от двух сливающихся черных дыр — орбита быстро уменьшается из-за излучения момента вращения в виде гравитационных волн и в конце концов они сливаются, оставляя «послезвон» — сброс искажений формы в виде гравитационных волн.
Гравитационно-волновая астрономия — давний предмет вожделения специалистов. Она позволяет изучать объекты, слабо проявляющие себя в электромагнитном излучении, а значит недоступные современной астрономии. За подробностями советую прочесть «Гравитационно-волновое небо»
Как можно обнаружить гравитационную волну? К сожалению, для этого нет простых способов. В LIGO используется свойство гравитационных волн переодически изменять расстояния между двумя тестовыми массами (и тестовые массы здесь ключевой детектор), только вот изменения эти очень невелики. Если мы раздвинем две тестовые массы, скажем, на километр, то все что мы увидим — колебания расстояния между ними с амплитудой ~ 10–21, т.е. около 1/10000 размера протона, и одной миллиардной размера электронной оболочки атома. Если увеличить линейку до миллиона километров, ситуация кардинально не улучшится (даже если протянуть линейку до Плутона, то ее точность должна быть в районе нанометров).
Отклонение тестовых масс (черные квадраты) при прохождении гравитационной волны от своих изначальных позиций (пустые квадратики).
Впрочем, если перейти от материальных линеек к световым, то можно достичь некого прогресса. Интерферометр Майкельсона использует деструктивную интерференцию (т.е. гашение двух волн в противофазе) прошедших через два измерительных плеча. Если длина плеч перестает быть равными, то на детекторе начинает появляться свет, причем для идеального, не-квантового света мы можем измерить таким образом любую величину смещения зеркал.
Принцип влияния проходящей ГВ на интерферометр Майкельсона и возникновение сигнала при разбалансировке размеров плеч.
На практике, лабораторные интерферометры без особых проблем измеряют изменения расстояний в десятки нанометров, а передовые устройства — доли нанометров. Даже если сделать интерферометр с плечами ~4 км (а это оптимальная длина по бюджету шумов, о чем мы поговорим дальше) и с точность 0,1 нм, то это всего лишь ~10–14 — т.е. все еще в 10 миллионов раз меньшая чувствительность, чем надо!
Добраться до нобелевской премии необходимой прецизионности хотя бы в теории помогает использование оптических резонаторов Фабри-Перо. Вставка такого резонатора в длинное измерительное плечо интерферометра заставляет свет многократно отражаться между двумя зеркалами, нанесенными на тестовые массы. Фактически это удлиняет эффективную длину интерферометра в несколько сот раз (для LIGO это значение около 300). Далее этот трюк повторяется путем вставки отражателей в вход и выход интерферометра — фотоны, выскакивающие с резонаторов в длинных плечах, многократно отражаются обратно и постепенно набирают технически измеряемую разность хода лучей.
Принципиальная схема LIGO: ETM — внешние тестмассы, ITM — внутренние, вместе они образуют резонатор. CP — термокомпенсирующие пластины, BS — делитель луча. PRM и SRM — системы рециклирования исходных фотонов и фотонов полезного сигнала, PD — фотодиод, GW readout — система считывания сигнала гравитационных волн.
Впрочем, между идеей и реализацией в данном случае лежит пропасть. Беря в руки измерительный прибор такой прецизионности, вы обнаружите десятки источников шумов, которые в тысячи и миллионы раз превосходят полезный сигнал. Впрочем, говоря о миллионах я слишком преуменьшаю. Сейсмические колебания по амплитуде превосходят сигнал ГВ на 11 порядков (т.е. в 100 миллиардов раз).
Вибрация зеркал без демпфирования, приведенная к измеряемой характеристике (расстоянию между тестовыми массами) в месте установки LIGO.
Борьба с этими шумами представляет собой невероятную инженерно-физическую сагу, растянувшуюся на десятилетия. Рассказывая о этой борьбе, удобно все приводить в систему, в которой записывается полезный сигнал — т.е. в виде амплитуды колебаний плеча интерферометра, сравнивая ее с заветной чувствительность 10–21.
Трубы вакуумной системы имеют диаметр 1,24 метра, в частности здесь изображена угловая (центральная) станция LIGO Hanford. Вправо уходит 4 километровое измерительное плечо.
Первым инженерным чудом, на котором базируется LIGO, является вакуумная система. Объем оптической системы, подвергающуюся вакуумированию очень велик — около 10 тысяч метров3, при этом уровень вакуума — 10–9 торр (~10–7 Па — это разряжение круче, чем в вакуумной камере ИТЭР). Вакуум нужен, прежде всего, для изоляции оборудования от акустических вибраций, и во вторую очередь — для того, чтобы избавиться от случайных искажений фазы лазерного луча на молекулах газов, что дало бы ненужный шум на приемном детекторе. До создания прототипов вакуумных объемов LIGO не было даже понятно, удастся ли выдержать такой вакуум в таком объеме — до LIGO никто этого не достигал. Для откачки используется набор из механических форвакуумных насосов, турбомолекулярных насосов, криоловушек и ионных насосов. Всего достижение рабочего вакуума с промежуточным отжигом в LIGO занимает 40 суток.
Пост измерения качества вакуума и состава остаточных газов в составе LIGO.
Внутри вакуумной системы находятся основные составляющие — оконечные тестовые массы ETM («дальние» зеркала плеч), внутренние тестовые массы ITM, делитель луча BS, камеры регенерации входного луча и выхода сигнала PRC и SRC, системы очистки пространственных мод (о модах дальше) лазерного излучения. При этом сам основной лазер расположен снаружи, на практически обычном лабораторном оптическом столе.
Говоря про лазеры LIGO необходимо отметить, что в одной и той же оптической системе сосуществуют сразу два — основной суперстабильный лазер с длиной волны 1064 нм и вспомогательный с длиной волны 532. Последний используется для измерения расстояния между зеркалами и активной коррекции положения оптики, нужной для ввода резонаторов Фабри-Перо в режим сохранения света.
Основной 200-ваттный измерительный лазер LIGO (установленный в 2010 году, до этого был гораздо менее мощный лазер). Черная пирамида справа — перископ, отправляющий лазерный луч в интерферометр.
Основной лазер 1064 нм расположен на обычном оптическом столе и представляет собой ультрастабильный по частоте и амплитуде (10–7 и 10–9 соответственно) лазер мощностью 220 ватт на столе и 180 ватт после системы очистки мод. Модами называются провольные и поперечные стоячие волны, возникшие в пучке лазера, так вот — для LIGO нужен луч лазера с только основной TEM00 модой, т.е. где фактически пространственно полностью однородный пучок.
Детальное изображение выходной части лазера, включающее в себя зависимый усилитель луча с 35 до 220 Вт, диагностическую сборку, предварительный очиститель мод PMC, и образцовый резонатор для подстройки частоты лазера.
Кстати, обратите внимание на мощность. 200-ваттные постоянные лазеры скорее ассоциируются с резкой материалов, чем с тонкими физическими экспериментами. Однако в случае LIGO точность определения координат зеркал растет как корень из мощности лазера, поэтому в плечах интерферометра курсирует захваченная мощность в сотни киловатт лазерного света (планируемая — до 830 кВт!). Отрицательным эффектом от сумасшедшей мощности являются искажения оптики от нагрева — и это в лазерной системе с максимальными требованиями в мире. Но об этом мы еще поговорим.
Для получения стабильной затравочной частоты используется специальный непланарный лазерный резонатор — частота планарного лазера слишком зависит от расстояния между торцевыми зеркалами, которые меняются из-за температурного расширения кристалла.
Сгенерированный лазерный луч подается внутрь вакуумной системы, где он проходит входной очиститель пространственных мод, резонатор рециркулирующий входную мощность и через делитель луча попадает в измерительные плечи. По мере прохода системы растут требования к неподвижности зеркал, ведь их движения от вибраций можно принять за сигнал от гравитационной волны!
Через такой порт излучение заводится внутрь вакуумной системы.
В цифрах это выглядит так — в диапазоне максимальной чувствительности интерферометра (от 30 до 600 гц) амплитуда шумовых колебаний зеркал должна составлять от 10–13 м до 10–19 м. При том, что обычный уровень вибраций таких зеркал без каких-то в систем подавления в местах постройки интерферометров (Хэнфорд и Ливингстон) составляет от ~10–10 метра. Разница в 9 порядков между «есть» и «нужно» настолько велика, что потребовалось около 30 лет разработок и исследований, чтобы ее преодолеть.
Внешний вид подвески тестовых масс вводит в заблуждение: металлическая рама тут для вспомогательных элементов, она не держит саму тестовую массу (розовый диск внизу)
Создатели LIGO говорят, что без его фантастических демпфирующих вибрацию подвесок интерферометр способен фиксировать велосипедистов в километрах от установки, чувствовать дрожание от прибоя в тысячах километрах, более того — LIGO чувствителен к перемещению воздушных масс, вызывающих колебания гравитационного поля (!).
В создании подвесок, ослабляющих воздействие среды на 10 порядков, использовались 3 подхода. Первый, классический — это создание максимально жестких конструкций первых стадий подвески, что минимизирует амплитуду вибраций. Второй подход также известен борцам с вибрацией — это активные системы компенсации, движущие платформу в противоположном к вибровоздействию направлении, что позволяет где-то в 1000 раз снизить амплитуду вибраций. Наконец, и в этом уникальное решение LIGO — это использование на последних стадиях (подвеска ETM/ITM имеет 7 стадий виброподавления) маятников.
Активная изоляция последний версии LIGO (справа) — прецизионные гидравлические приводы вакуумной камеры, двухступенчатый активный (с электроприводами) подавитель вибрации и 4-ступенчатый маятник.
Схема маятникового подвеса.
Казалось бы, маятник — это самое последнее, что нужно для минимизации раскачивания оптики. Однако, здесь используется хитрый трюк, а именно — сверхвысокодобротные маятники, собственная частота которых выведена из рабочего диапазона (они качаются медленнее, чем минимальная частота гравитационных волн, которую отслеживает LIGO). Это означает, что любое вибровоздействие будет переводиться в собственную частоту колебания маятника и очень сильно ослабляться на других частотах.
Степень подавления вибраций активной частью (синяя линия), маятником (зеленая) и общая (красная).
После значительного ослабления вибраций и активной компенсации медленных «геологических» колебаний главным источником шума становятся тепловые шумы системы. Тепловые колебания атомов легко игнорировать, пока вы не пытаетесь измерить что-то в тысячи раз меньше этих атомов.
В борьбе с тепловыми колебаниями (в ходе исследования даже было открыто принципиально новое термоколебательное явления) используется тот же подход — тестовые массы представляют собой высоко гомогенные цилиндры из плавленого кварца, отполированные со всех сторон до шероховатости 1 нм, что создает высокодобротный «камертон», собственные частоты которого лежат вне полосы измерения резонатора. И тем не менее, броуновские движения частиц в отражающем покрытии зеркал ITM/ETM являются одним из доминирующих источников шума в LIGO.
Бюджет вклада разных видов шума в общую чувствительность LIGO (расчетные значения). В целом чувствительность в основном определяется квантовым пределом (фиолетовая линия) и в диапазоне 50–100 Гц — тепловым шумом покрытия (красная линия).
Интересно, что одним из участков борьбы с шумами оказались нити, на которых подвешены тестовые массы. В них гуляют термоупругие шумы, возникающие из взаимосвязи температуры и модуля Гука. Для минимизации этого явления пришлось использовать тонкие кварцевые нити (0,4 мм) и максимально гладко присоединять их к кварцевой тестовой массе (этим занимались в Университете Глазго, а теория всех этих моментов разрабатывалась на Физфаке МГУ). Интересно, что время успокоения (рассеивания энергии) этого маятника в вакууме превышает 10 лет.
Приварка кварцевых нитей к маятниковой массе.
Разумеется, как часть этой борьбы за прецизионность, зеркала ITM/ETM обладают рекордной гладкостью поверхности — с помощью «ионного фрезерования» их подложка была доведена до шероховатости в 0,08 нм — т.е. до фундаментального предела, обусловленного размерами молекул диоксида кремния. Подобная гладкость и 40-слойные отражающие покрытия привели к рекордным характеристикам зеркал — потери света при отражении между ITM и ETM составляют всего 50 ppm (т.е. 0,005%!). Этот момент был принципиально важен для построения LIGO, как в смысле максимальной добротности оптических резонаторов, так и в смысле максимальной одинаковости плеч, в т.ч. минимальной разницы в потерях света в них.
Одно из зеркал системы рециркуляции мощности PRM. Кстати, на взгляд эта оптика практически прозрачная — суперзеркальные покрытия работают только в узком диапазоне частот вокруг ИК излучения лазера.
Еще одним интересным аспектом подвески тестовых масс является то, что зеркала тут должны быть активными — т.е. выставляться в нужные позиции с точностью до десятков пикометров для захвата света резонаторами Фабри-Перо. Но как это сделать для зеркала, которое:
а) должно быть измерительной массой, не связанной ни с чем
б) демпфированно на 12 порядок от любых вибраций?
Ответ заключается в разделении зеркала на 2 составляющие, одна из которых — тестовая масса, а вторая — реактивная масса. Обе массы одинаково задемпфированы от вибраций, а расстояние между ними регулируется электростатическим приводом. Кстати, для того, чтобы колебания заряда и соответственно силы электростатического привода не мешали измерениям, пришлось избавится от от близко стоящего ионного вакуумного насоса, ионы которого снижали заряд тестовой массы.
На тестовой массе внизу видны концентрические электроды электростатического актуатора. Защитные пленки с оптики сняты, видно пятно (зеленое) измерительного интерферометра — это последние стадии настройки adLIGO до вакуумирования.
Продолжая тему шумов, необходимо рассказать про термокомпенсацию оптики. Луч лазера, особенно в резонаторах Фабри-Перо, где его мощность по проекту достигает 830 киловатт, даже при минимальном поглощении нагревает кварц, вызывая искажение формы зеркал. Обычно в оптике с этим борются путем принудительного охлаждения, но в данном случае — в вакууме и на суперподвеске — очевидно, этого сделать невозможно. В LIGO применили нетривиальное решение — нагреть остальную часть зеркала до той же температуры. Для этого используются вращающиеся проекторы с СО2 лазером, которые греют на специальных пластинах, вставленных между основными элементами кольцевую зону вокруг измерительного луча, компенсируя тем самым искажения формы.
Ключевой элемент интерферометра — делитель луча.
Один из самых удивительных шумов системы — это так называемый «Ньютоновский». Связан он с изменением гравитационного поля под влиянием лунных и солнечных приливов, перемещения мантийных масс, атмосферных участков с более высоким или более низким давлением.
Небольшие изменения гравитации возбуждают в коре медленные колебания, которые чувствует LIGO. Для отстройки от этого шума выстроена целая система гравиметров, датчиков давления, температуры и микрофонов, которая дает данные на вход системы автоподстройки интерферометра, которая пытается компенсировать эти воздействия. Тем не менее на частотах ниже 10 Гц амплитуда этих воздействий начинает доминировать в шумовой картине, образуя т.н. seismic wall. Фактически это означает, что на земле невозможно построить детектор низкочастотных гравитационных волн, которые характерны, например, для сливающихся сверхбольших черных дыр (ядер галактик). Для этой космологии понадобятся интерферометрические ГВ-обсерватории космического базирования.
Исторический первый зафиксированный случай обнаружения гравитационно-волнового события 14.09.2015 — еще до официального начала первого сеанса работы улучшенного LIGO. Видно, что в амплитудных значениях пик ГВ всего в два раза превышал амплитуду шумов, но в спектральном разложении ГВ очень хорошо просматриваются.
На сегодня LIGO в ходе 3 сеансов научной работы зафиксировал 5 событий с высоким уровнем надежности и один кандидат (LVT151012) который возможно является просто шумом. Четыре первых зафиксированных события — довольно далекие слияния черных дыр, хотя изначально инструмент рассчитывался на поиск сливающихся нейтронных звезд на удалении до 200 мегапарсек.
В ходе примерно 30 лет совершенствования лазерно-интерферометрических технологий (в т.ч. сами LIGO прошли 2 апгрейда в начале 2000х и начале 2010х годов) физики вплотную приблизились к фундаментальному пределу точности измерения — квантовому. Практически на всех частотах квантовый предел, возникающий из принципа неопределенностей Гейзенберга, определяет чувствительность машины. Хотя есть несколько способов слегка его отодвинуть (путем использования «сжатого света» и увеличением тестовых масс), но в целом не видно путей, как поднять чувствительность наземных лазерных интерферометров выше примерно 10–24.
Подробнее про LIGO и квантовый предел можно узнать из докладов на конференции HEA-2016 на этом видео.
Но и такая чувствительность будет весьма интересным результатом. LIGO, работая в 2014–2017 годах на чувствительности около 10–22 ловит примерно 1 гравитационно-волновое событие в год. Однако детектирование ГВ обладает очень приятным свойством — мы детектируем амплитуду, а не мощность, как в электромагнитном спектре. Амплитуда любых волн падает линейно в зависимости от расстояния до источника, а значит, увеличение чувствительности всего в 2 раза повышает обозреваемый объем в куб от 2 — т.е. 8 раз. Примерно в 8 раз же вырастает и количество источников гравитационных волн, и частота событий.
Увеличение чувствительности на 1,5–2 порядка может привести к тому, что ГВ-события будут регистрироваться несколько раз в час.
В Европе тоже есть своя лазерно-интерферометрическая обсерватория VIRGO, расположенная в Италии. Подобные установки так же строятся в Индии (куда был передан один экземпляр LIGO) и в Японии.
Впрочем, на сегодня (осень 2017 года), LIGO еще не достиг даже запланированного предела по чувствительности в 10–23, в основном из-за сложностей поднятия мощности захваченного в плечи излучения до планового значения в 830 киловатт. Например, большой проблемой оказались блики от элементов конструкции обратно в оптическую систему — хотя относительная мощность вроде невелика, паразитные блики отражаются от нестабилизированных элементов и несут в себе уровень вибраций на 12 порядков превышающий уровень в основном луче.
Достигнутая на сегодня чувствительность — чуть хуже, чем 10–23 и порядка 4–5×10–23 в широком диапазоне частот. VIRGO пока имеет чувствительность в несколько раз хуже.
В любом случае, сентябрь 2015 года стал началом нового вида астрономии, который еще наверняка многое расскажет о Вселенной (например, частота столкновений черных дыр промежуточной массы уже стала неожиданной для астрономов — никто не подозревал, что таких ЧД так много). Еще одним интересным результатом программы LIGO стало то, что научный результат может стать плодом десятилетий труда, и не стоит заниматься экстраполяциями в духе «не получили за 20 лет — не получат никогда».
P.S. Прекрасная история о людях и идеях на пути к открытию гравитационных волн от Игоря Иванова.
P.P. S. Буквально одновременно с этой публикацией коллаборация астрономов со всего мира объявила о обнаружении слияния двух нейтронных звезд с помощью гравитационно-волновых детекторов, а также нескольких телескопов (оптических, гамма и рентгеновских).