Криптоалгоритмы. Классификация с точки зрения количества ключей

0dff10c7e799423c93b99e625327da9a.jpg

На Хабрахабре уже порядка 1000 статей так или иначе связанные с шифрованием, но иногда возникает ситуация, когда быстро нужна информация по тому или иному алгоритму.

Вместо предисловия


Изначально это должен был быть цикл из 3-х публикаций, но вовремя публикации первой и второй в комментариях мне было предложено сделать одну общую статью.
К сожалению, потребовалось больше времени, но теперь представляю Вам список из порядка 50 криптоалгоритмов, который представляет собой справочник с кратким описанием алгоритмов, а также местами их реализацией.

Часть алгоритмов довольна известна, часть является откровенной экзотикой. Но это именно те алгоритмы показались мне интересны. Возможно где-то акцент сделан не на привычные всем вещи., но как говорится на вкус и цвет все фломастеры разные. И которые так или иначе изучались в профильном ВУЗе и по которым чаще всего требовалась информация. Так сказать краткий конспект студента.

Отдельная благодарность apashkova за помощь и редактуру.
Заранее благодарю, за отзывы и предложения.

Типизация КА


Итак, представляю вам статью, в которой собраны, известные и не очень, криптографические алгоритмы. Оговоримся, что статья не претендует на новаторство, или уникальность. Скорее краткий справочник, кто-то даже назовет это прикроватным чтивом. Существуют различные классификации криптоалгоритмов, например, такая:

38b4d7710ddf45c89f78e9df4273db8d.gif


Для удобства я буду использовать деление на группы по количеству ключей:

  1. Бесключевые КА — не используют в вычислениях никаких ключей;
  2. Одноключевые КА — работают с одним ключевым параметром (секретным ключом);
  3. Двухключевые КА — на различных стадиях работы в них применяются два ключевых параметра: секретный и открытый ключи.


Терминология:
  • Открытый (исходный) текст — данные (не обязательно текстовые), передаваемые без использования криптографии.
  • Шифротекст, шифрованный (закрытый) текст — данные, полученные после применения криптосистемы (обычно — с некоторым указанным ключом).
  • Ключ — параметр шифра, определяющий выбор конкретного преобразования данного текста. В современных шифрах криптографическая стойкость шифра целиком определяется секретностью ключа (принцип Керкгоффса).
  • Шифр, криптосистема — семейство обратимых преобразований открытого текста в шифрованный.
  • Шифрование — процесс нормального применения криптографического преобразования открытого текста на основе алгоритма и ключа, в результате которого возникает шифрованный текст.
  • Расшифровывание — процесс нормального применения криптографического преобразования шифрованного текста в открытый.
  • Асимметричный шифр, двухключевой шифр, шифр с открытым ключом — шифр, в котором используются два ключа, шифрующий и расшифровывающий. При этом, зная лишь ключ зашифровывания, нельзя расшифровать сообщение, и наоборот.
  • Открытый ключ — тот из двух ключей асимметричной системы, который свободно распространяется. Шифрующий для секретной переписки и расшифровывающий — для электронной подписи.
  • Секретный ключ, закрытый ключ — тот из двух ключей асимметричной системы, который хранится в секрете.
  • Криптоанализ — наука, изучающая математические методы нарушения конфиденциальности и целостности информации.
  • Криптоаналитик — учёный, создающий и применяющий методы криптоанализа.
  • Криптографическая атака — попытка криптоаналитика вызвать отклонения в атакуемой защищённой системе обмена информацией. Успешную криптографическую атаку называют взлом или вскрытие.
  • Дешифрование (дешифровка) — процесс извлечения открытого текста без знания криптографического ключа на основе известного шифрованного. Термин дешифрование обычно применяют по отношению к процессу криптоанализа шифротекста (криптоанализ сам по себе, вообще говоря, может заключаться и в анализе криптосистемы, а не только зашифрованного ею открытого сообщения).
  • Криптографическая стойкость — способность криптографического алгоритма противостоять криптоанализу.
  • Имитозащита — защита от навязывания ложной информации. Другими словами, текст остаётся открытым, но появляется возможность проверить, что его не изменяли ни случайно, ни намеренно. Имитозащита достигается обычно за счет включения в пакет передаваемых данных имитовставки.
  • Имитовставка — блок информации, применяемый для имитозащиты, зависящий от ключа и данных.
  • Электронная цифровая подпись, или электронная подпись — асимметричная имитовставка (ключ защиты отличается от ключа проверки). Другими словами, такая имитовставка, которую проверяющий не может подделать.
  • Центр сертификации — сторона, чья честность неоспорима, а открытый ключ широко известен. Электронная подпись центра сертификации подтверждает подлинность открытого ключа.
  • Хеш-функция — функция, которая преобразует сообщение произвольной длины в число («свёртку») фиксированной длины. Для криптографической хеш-функции (в отличие от хеш-функции общего назначения) сложно вычислить обратную и даже найти два сообщения с общей хеш-функцией.


Бесключевые КА


md2/4/5/6


MD2 — криптографическая хеш-функция, разработанная Рональдом Ривестом в 1989 году, и описанная в RFC 1319. На входе сообщение произвольный длины. Размер хеша — 128 бит.

Как писал в свое время braindamagedman о MD5 и MD6:

Алгоритм MD5 имел некогда большую популярность, но первые предпосылки взлома появились еще в конце девяностых, и сейчас его популярность стремительно падает.

Алгоритм MD6 — очень интересный с конструктивной точки зрения алгоритм. Он выдвигался на конкурс SHA-3, но, к сожалению, авторы не успели довести его до кондиции, и в списке кандидатов, прошедших во второй раунд этот алгоритм, отсутствует.

Tiger


Криптографическая хеш-функция, разработанная Росом Андерсоном и Эли Бихамом в 1995 году. Tiger был предназначен для особенно быстрого выполнения на 64-разрядных компьютерах. Tiger не имеет патентных ограничений, может использоваться свободно как с эталонной реализацией, так и с её модификациями. Размер значения хеша — 192 бита (Tiger/192), хотя имеются также более короткие версии для совместимости с SHA-1 (Tiger/160) и с MD4, MD5, RIPEMD, Snefru (Tiger/128). Скорость работы — 132 Мбит/с (проверено на одном процессоре Alpha 7000, модель 660). На современных процессорах значительно быстрее (даже при тесте на 32-битном AMD Sempron 3000+ скорость около 225 Мбит/с).
Так же была реализована Вторая версия Tiger2 —отличается от основной только другим алгоритмом добавления битов, сходным с MD5/SHA-1. Для Tiger2 доступны тестовые векторы.

Sha-½


Алгоритм криптографического хеширования. Описан в RFC 3174. Для входного сообщения произвольной длины (максимум 22^64–1 бит, что примерно равно 2 эксабайта) алгоритм генерирует 160-битное хеш-значение, называемое также дайджестом сообщения. Используется во многих криптографических приложениях и протоколах. Также рекомендован в качестве основного для государственных учреждений в США. Принципы, положенные в основу SHA-1, аналогичны тем, которые использовались Рональдом Ривестом при проектировании MD4.

SHA-3


Алгоритм хеширования переменной разрядности, разработанный группой авторов во главе с Йоаном Дайменом, соавтором Rijndael, автором шифров MMB, SHARK, Noekeon, SQUARE и BaseKing. 2 октября 2012 года Keccak стал победителем конкурса криптографических алгоритмов, проводимым Национальным институтом стандартов и технологий США. 5 августа 2015 года алгоритм утверждён и опубликован в качестве стандарта FIPS 202. В программной реализации авторы заявляют о 12,5 циклах на байт при выполнении на ПК с процессором Intel Core 2. Однако в аппаратных реализациях Keccak оказался намного быстрее, чем все другие финалисты. Алгоритм SHA-3 построен по принципу криптографической губки.

Ripemd


Криптографическая хеш-функция, разработанная в Католическом университете Лувена Хансом Доббертином (Hans Dobbertin), Антоном Босселарсом (Antoon Bosselaers) и Бартом Пренелом (Бартом Пренелем). Для произвольного входного сообщения функция генерирует 160-разрядное хеш-значение, называемое дайджестом сообщения. RIPEMD-160 является улучшенной версией RIPEMD, которая, в свою очередь, использовала принципы MD4 и по производительности сравнима с более популярной SHA-1.
Существуют так же 128-, 256- 320-битные версии алгоритма, имеющие соответственные названия.

Haval


Криптографическая хеш-функция, разработанная Yuliang Zheng, Josef Pieprzyk и Jennifer Seberry в 1992 году. Для произвольного входного сообщения функция генерирует хеш-значение, называемое дайджестом сообщения, которое может иметь длину 128, 160, 192, 224 или 256 бит. Количество итераций — переменное, от 3 до 5. Количество раундов на каждой итерации — 32. Является модификацией MD5.

Теперь пришло время одноключевых КА.


Rijndael


Так же известный как Advanced Encryption Standart — симметричный алгоритм блочного шифрования. Размер одного блока. 128 бит, ключи 128/192/256, принят стандартом правительством США по результатам конкурса AES.
Пришел на смену алгоритму DES (о нем чуть позже). Спецификация была опубликована 26 ноября 2001 год. 26 мая 2002 был объявлен стандартом шифрования. По состоянию на 2009 год является одним из самых распространенных алгоритмов симметричного шифрования.
Интересным факт, 128 ключ обеспечивает 340 андециллионов возможных комбинаций.

DES


Алгоритм для симметричного шифрования, разработанный фирмой IBM и утверждённый правительством США в 1977 году как официальный стандарт (FIPS 46–3). Размер блока для DES равен 64 бита. В основе алгоритма лежит сеть Фейстеля с 16-ю циклами (раундами) и ключом, имеющим длину 56 бит. Алгоритм использует комбинацию нелинейных (S-блоки) и линейных (перестановки E, IP, IP-1) преобразований. Для DES рекомендовано несколько режимов:

  • ECB (англ. electronic code book) — режим «электронной кодовой книги» (простая замена);
  • CBC (англ. cipher block chaining) — режим сцепления блоков;
  • CFB (англ. cipher feed back) — режим обратной связи по шифротексту;
  • OFB (англ. output feed back) — режим обратной связи по выходу.
  • Прямым развитием DES в настоящее время является алгоритм Triple DES (3DES). В 3DES шифрование/расшифровка выполняются путём троекратного выполнения алгоритма DES.


MMB-шифр


От англ. modular multiplication-based block cipher — модульный блочный шифр, использующий умножение) — блочный алгоритм шифрования, основанный на операции умножения в конечной группе.
Блочный шифр, основанный на операции умножения в конечной группе (MMB) представляет собой блочный шифр, разработанный Йоан Дайменом в 1993 году как улучшение шифра IDEA. Основное новшество этого шифра заключается в использовании циклического умножения в группе Z2n−1. Создатели шифра предлагали сделать n=32, таким образом умножение будет производиться в группе Z4294967295. Также стоит отметить, что длина слов, с которыми будут производиться операции, равна n, то есть 32 в данном случае. Основная цель, которая преследовалась при создании этого шифра — создать шифр, устойчивый к дифференциальному криптоанализу. Недостатки в ключевом расписании были обнаружены Эли Бихамом, что, в комбинации с тем фактом, что шифр не был защищён от линейного криптоанализа, привело к использованию других шифров, например, 3-Way шифра.

BaseKing


В криптографии BaseKing — блочный шифр, разработанный в 1994 году Йоаном Дэменом (Joan Daemen).
Он очень тесно связан с 3-WAY; действительно, они — варианты той же самой общей техники шифрования.
У BaseKing размер блока 192 битов, что в два раза длиннее, чем 3-WAY. Длина ключа — также 192 бита.
В диссертации Дэемен представил обширную теорию блочного шифра, как довольно общий алгоритм шифра, составленный из многих обратимых преобразований, которые могут быть выбраны со значительной свободой. Он обсудил безопасность этой общей схемы против известных нападений, и дала два определённых примера шифров, состоящих из специфических выборов для переменных параметров. Эти шифры 3-WAY и BaseKing. BaseKing восприимчив к тому же самому виду нападению как 3-WAY. Daemaen, Peeters, и Ван Асш также демонстрировали потенциальную уязвимость к дифференциальному анализу, наряду с небольшим количеством методов, чтобы увеличить сопротивление данного выполнения BaseKing к такому нападению.

NOEKEON


Семейство из двух блочных шифров, разработанных Йоаном Дайменом, Michaël Peeters, Gilles Van Assche и Винсентом Рэйменом и представленных в исследовательском проекте NESSIE. Два шифра представляют собой NOEKEON в прямом режиме (direct mode) и в косвенном режиме (indirect mode). Отличаются режимы только процедурой расширения ключа.
Длина ключа в NOEKEON равна 128 битам. В каждом раунде NOEKEON использует последовательность преобразований, обратных самим себе, которые с легкостью могут быть реализованы в аппаратном или программном обеспечении, причем даже в таком, где существует возможность атаки по сторонним каналам. Шифр является компактным в реализации на различных языках программирования, быстро работает на различных аппаратных средствах и является очень эффективным в широком диапазоне платформ. Однако, NOEKEON не отвечал требованиям Wide Trail Design Strategy, что показал криптоанализ, проведенный Ларсом Кнудсеном и Håvard Raddum в апреле 2001. Кнудсен и Raddum показали, что на данный шифр возможна атака на основе связанных ключей, из-за чего шифр не прошел отбор в проекте NESSIE.
На рассмотрение в рамках конкурса NESSIE были приняты оба режима алгоритма Noekeon. Оба режима оказались подвержены атаке на основе связанных ключей, которую предложили криптологи Ларс Кнудсен и Håvard Raddum в своей работе. Кроме того, ими же было доказано, что критерии создания таблиц замен в операции Gamma не способствуют высокой криптостойкости алгоритма: при генерации таблицы замен результирующий алгоритм с вероятностью примерно 86% окажется подвержен линейному и/или дифференциальному криптоанализу. Также было показано, что с большой вероятностью возможно найти связанные ключи. Этих причин оказалось достаточно для невыхода алгоритма Noekeon во второй раунд конкурса.

DFC


Decorrelated Fast Cipher — блочный симметричный криптоалгоритм, созданный в 1998 году совместно криптографами Парижской Высшей нормальной школы, Национального центра научных исследований (CNRS) и телекоммуникационного гиганта France Telecom под руководством известного криптолога Сержа Воденэ (англ.), специально для участия в конкурсе AES. Относится к семейству PEANUT (Pretty Encryption Algorithm with n-Universal Transformation) шифров.
Блочный шифр с длинного блока 128 бит, представляющий 8-ми раундовую Сеть Фейстеля. Используется 64-битовая функция шифрования с восемью различными раундовыми ключами по 128 бит, получаемыми из одного исходного ключа шифрования. Каждый раунд функция шифрования использует левую половину исходного текста (блока) и два 64-битных ключа, являющихся половинами соответствующего раундового, для получения 64-битного шифрованного текста. Полученная зашифрованная левая половина блока прибавляется к правой. Затем, согласно идее сети Фейстеля, левая и правая части блока меняются местами. Расшифровывание происходит так же, как и шифрование с использованием раундовых ключей в обратном порядке. Длина исходного ключа шифрования не ограничивается тремя фиксированными размерами, предусмотренными конкурсом AES (128, 192 и 256 битов), и может быть переменного размера от 0 до 256 бит.

Пример реализации на Ассемблере:
void madd(u4byte acc[4], u4byte x[1], u4byte y[1])
{ __asm {
__asm mov ecx,x
__asm mov edx,y
__asm mov eax,[ecx]
__asm mov ecx,[edx]
__asm mul ecx
__asm mov ebx,acc
__asm xor ecx,ecx
__asm add [ebx],eax
__asm adc [ebx+4],edx
__asm adc [ebx+8],ecx
__asm adc [ebx+12],ecx
}
};
#endif


DECIM


Decim — потоковый шифр на основе РСЛОС, разработанный Комом Бербаином, Оливером Биллетом, Анн Канту, Николя Куртуа, Бландином Дебре, Генри Гильбертом, Луи Губином, Алином Гуже, Луи Гранбуланом, Седериком Ларду, Марин Минье, Томасом Порнином и Эрвом Сибе. Специализирован для аппаратной реализации. Запатентован. Был представлен в проекте eSTREAM, где не прошёл дальше третьего этапа.
Самое главное требование к шифрам — устойчивость к различным видам атак. Алгебраические атаки — одна из самых серьёзных угроз безопасности потоковым шифрам. Если соотношение между комбинацией битов секретного ключа и порождённым её битом гамма является простым или легко предсказуемым, то и нахождение алгебраических зависимостей между комбинацией битов секретного ключа и битом ключевого потока (гамма) так же является простой задачей. Для усложнения соотношений между комбинацией битов секретного ключа (или комбинацией битов начального состояния РСЛОС, порождённого секретным ключом) и битов ключевого потока (гамма) используют нелинейную фильтрующую функцию от комбинации битов секретного ключа и механизмы десинхронизации между комбинацией битов секретного ключа и битами ключевого потока (гамма). Оба этих механизма (нелинейная фильтрующая функция и механизм десинхронизации между комбинацией битов РСЛОС и битами ключевого потока) являются основой работы и основным средством предотвращения криптоаналитических атак шифра Decim.
Начало работы потокового шифра Decim начинается с ввода 80-битного секретного ключа и 64-битного открытого ключа (Initialization Vector). Затем, с помощью определённых линейных комбинаций битов К и битов IV, использования нелинейной фильтрующей функции F и применения механизма выборки ABSG вычисляется начальное состояние 192 битного РСЛОС. После выполнения всех этих операций начинается генерация ключевого потока $z=(zt) | t>>0$» /> и заполнение им специального буфера BUFFER, использующегося для обеспечения непрерывной выдачи битов <img src= на выход шифра, где происходит их сложение по модулю два с двоичной последовательностью символов открытого текста.

MICKEY


Алгоритм потокового шифрования. Существует два варианта этого алгоритма — с длиной ключа 80 бит (MICKEY) и 128 бит (MICKEY-128). Он был разработан Стивом Бэббиджем и Мэтью Доддом в 2005 году с целью использования в системах с ограниченными ресурсами. Этот алгоритм имеет простую аппаратную реализацию при высокой степени защищённости. В нём используется нерегулярное тактирование сдвиговых регистров, а также новые методы, обеспечивающие достаточно большой период и псевдослучайность ключевой последовательности и устойчивость к атакам. Алгоритм MICKEY участвовал в конкурсном проекте eSTREAM, организованным сообществом eCRYPT. Текущая версия алгоритма — 2.0. Она вошла в портфолио eCRYPT, как потоковый шифр для аппаратной реализации.
Максимальная длина ключевой последовательности, полученной с помощью одной пары (K, IV) составляет 240 бит. Однако допускается получение 240 таких последовательностей при использовании одного K при условии, что IV выбирается разными для каждой новой последовательности.

SC2000


Симметричный блочный криптоалгоритм, разработанный фирмой Fujitsu и университетом г. Токио в 2000 году. В алгоритме используется 128-битный блок и ключ длиной от 128 до 256 бит (совместим со стандартом AES и поддерживает типовые длины ключа — 128/192/256). Был рекомендован комитетом CRYPTREC в 2003 году для использования государственными учреждениями Японии, однако в 2013 году был перемещён в список «кандидатов» в рекомендованные шифры. Участвовал в конкурсе Nessie, но не попал во второй раунд, хотя и показал достаточную устойчивость к атакам — причиной стала его слишком сложная структура и опасение в вероятности скрытых уязвимостей.
SC2000 — шифр со смешанной структурой: здесь используются элементы сети Фейстеля и подстановочно-перестановочной сети. Алгоритм выполняет 6.5 (для 128-битного ключа) и ли 7.5 (для ключа длиной 192—256 бит) раундов шифрования. Каждый из раундов состоит из запросов к таблице подстановки, добавления ключа и бесключевой двухраундовой сети Фейстеля.
Применяется три таблицы замены: S-Box размером 4×4 бит используется в начале каждого раунда, размером 5×5 бит и 6×6 бит — внутри сети Фейстеля.
Расширение ключа в алгоритме SC2000 выполняется в два этапа: основе секретного симметричного ключа генерируется промежуточный ключ, затем из промежуточного ключа вычисляется нужное количество фрагментов расширенного ключа.
Один раунд шифра довольно сложен и состоит из следующих операций: Входное 128-битное значение делится на 4 подблока по 32 бита, на каждый из них операцией XOR накладывается 32-битный фрагмент расширенного ключа. Выполняется операция T, которая разбивает блок данных на 32 подблока по 4 бита каждый.
Каждый 4-битный подблок проходит через таблицу подстановки S4, которая выглядит так: (2,5,10,12,7,15,1,11,13,6,0,9,4,8,3,14)
Далее блок данных разбивается на 32-битные подблоки с помощью операции T», обратной к операции T. Выполняется наложение операцией XOR других четырёх фрагментов расширенного ключа. Значения первой пары подблоков передаются на вход функции F. В результате выполнения данной функции получаются два 32-битных значения, которые накладываются операцией XOR на два первых подблока. Первая пара подблоков меняется местами с второй парой подблоков, затем выполняется повторно прошлый шаг трансформации.

RC4


Также известен как ARC4 или ARCFOUR (alleged RC4) — потоковый шифр, широко применяющийся в различных системах защиты информации в компьютерных сетях (например, в протоколах SSL и TLS, алгоритмах обеспечения безопасности беспроводных сетей WEP и WPA).
Шифр разработан компанией «RSA Security», и для его использования требуется лицензия.
Алгоритм RC4, как и любой потоковый шифр, строится на основе генератора псевдослучайных битов. На вход генератора записывается ключ, а на выходе читаются псевдослучайные биты. Длина ключа может составлять от 40 до 2048 бит. Генерируемые биты имеют равномерное распределение.
Основные преимущества шифра:

  • высокая скорость работы;
  • переменный размер ключа.


RC4 довольно уязвим, если:

  • используются не случайные или связанные ключи;
  • один ключевой поток используется дважды.


Эти факторы, а также способ использования могут сделать криптосистему небезопасной (например, WEP).
Далее реализация Illivion.

Реализация на C#
using System;
using System.Linq;


namespace RC4_Testing
{
    public class RC4
    {
        byte[] S = new byte[256];

        int x = 0;
        int y = 0;

        public RC4(byte[] key)
        {
            init(key);
        }

        // Key-Scheduling Algorithm 
        // Алгоритм ключевого расписания 
        private void init(byte[] key)
        {
            int keyLength = key.Length;

            for (int i = 0; i < 256; i++)
            {
                S[i] = (byte)i;
            }

            int j = 0;
            for (int i = 0; i < 256; i++)
            {
                j = (j + S[i] + key[i % keyLength]) % 256;
                S.Swap(i, j);            
            }
        }

        public byte[] Encode(byte[] dataB, int size)
        {      
            byte[] data = dataB.Take(size).ToArray();              

            byte[] cipher = new byte[data.Length];

            for (int m = 0; m < data.Length; m++)
            {               
                cipher[m] = (byte)(data[m] ^ keyItem());
            }

            return cipher;
        }
        public byte[] Decode(byte[] dataB, int size)
        {
            return Encode(dataB, size);
        }
        
        // Pseudo-Random Generation Algorithm 
        // Генератор псевдослучайной последовательности 
        private byte keyItem()
        {
            x = (x + 1) % 256;
            y = (y + S[x]) % 256;

            S.Swap(x, y);

            return S[(S[x] + S[y]) % 256];
        }     
    }

    static class SwapExt
    {
        public static void Swap(this T[] array, int index1, int index2)
        {
            T temp = array[index1];
            array[index1] = array[index2];
            array[index2] = temp;
        }
    }
}


RC5


Блочный шифр, разработанный Роном Ривестом из компании RSA Security Inc. с переменным количеством раундов, длиной блока и длиной ключа. Это расширяет сферу использования и упрощает переход на более сильный вариант алгоритма.
Существует несколько различных вариантов алгоритма, в которых преобразования в «пол-раундах» классического RC5 несколько изменены. В классическом алгоритме используются три примитивных операции и их инверсии:

  1. сложение по модулю
  2. побитовое исключающее ИЛИ (XOR)
  3. операции циклического сдвига на переменное число бит.


Основным нововведением является использование операции сдвига на переменное число бит, не использовавшиеся в более ранних алгоритмах шифрования. Эти операции одинаково быстро выполняются на большинстве процессоров, но в то же время значительно усложняют дифференциальный и линейный криптоанализ алгоритма.
Шифрование по алгоритму RC5 состоит из двух этапов. Процедура расширения ключа и непосредственно шифрование. Для дешифрования выполняется сначала процедура расширения ключа, а затем операции, обратные процедуре шифрования.

Rabbit


Высокоскоростной поточный шифр впервые представленный в феврале 2003 года на 10-м симпозиуме FSE. В мае 2005, он был отправлен на конкурс eStream, целью которого было создание европейских стандартов для поточных систем шифрования.
Разработчиками Rabbit являются Martin Boesgaard, Mette Vesterager, Thomas Pedersen, Jesper Christiansen и Ove Scavenius.
Rabbit используют 128-битный ключ и 64-битный инициализирующий вектор. Шифр был разработан с целью использования в программном обеспечении, как обладающий высокой скоростью шифрования. При этом скорость шифрования могла достигать 3.7 циклов в байт (CPB) для процессора Pentium 3 и 10.5 циклов в байт для ARM7. Тем не менее, шифр также оказался быстрым и компактным при реализации в аппаратном обеспечении.
Основным компонентом шифра является генератор битового потока, который шифрует 128 битов сообщения за итерацию. Достоинство шифра в тщательном перемешивании его внутренних состояний между двумя последовательными итерациями. Функция перемешивания полностью основана на арифметических операциях, доступных на современных процессорах, то есть S-блоки подстановок и поисковые таблицы не нужны для реализации шифра.
Авторы шифра предоставили полный набор технических описаний на домашней странице Cryptico. Шифр также описан в RFC 4503. Cryptico обладала патентом на шифр, и многие годы для использования шифра в коммерческих целях требовалась лицензия. Однако, 6 октября 2008 шифр разрешили использовать для любых целей бесплатно.

NewDes


В криптографии симметричный блочный криптоалгоритм, разработанный Робертом Скотом в качестве замены стандарта DES в 1985 году с целью внедрения более надежного шифра с безопасным размером ключа — 120 бит.
NewDES, хотя и имеет производное наименование, имеет абсолютно иную структуру, значительно проще DES, легко реализуем программно и не включает побитовых перестановок, все операции производятся с байтами. Алгоритм использует таблицу замены из 256 элементов, в одном раунде производятся 8 операций сложения по модулю 2 и подстановки с использованием функции F — замен с использованием таблицы подстановок.
Ключевое расписание в первой редакции было довольно слабым и было исправлено в редакции NewDES-96. Как оказалось, алгоритм NewDES менее устойчив к криптоанализу, нежели алгоритм DES, хотя атака грубой силой на NewDES-96 практически невозможна и алгоритм в данной редакции значительно более безопасен.

Salsa20


Система поточного шифрования, разработанная Даниэлем Бернштейном (англ.) русск. Алгоритм был представлен на конкурсе «eSTREAM», целью которого было создание европейских стандартов для шифрования данных, передаваемых почтовыми системами. Алгоритм стал победителем конкурса в первом профиле (поточные шифры для программного применения с большой пропускной способностью).
Шифр Salsa20 использует следующие операции:

  1. сложение 32-битных чисел;
  2. побитовое сложение по модулю 2 (xor);
  3. сдвиги битов.


Алгоритм использует хеш-функцию с 20 циклами. Основные её преобразования напоминают алгоритм AES.

Seal


Симметричный поточный алгоритм шифрования данных, оптимизированный для программной реализации.
Разработан в IBM Филом Рогэвеем (англ.) (англ. Phil Rogaway) и Доном Копперсмитом (англ. Don Coppersmith) в 1993 году. Алгоритм оптимизирован и рекомендован для 32-битных процессоров. Для работы ему требуется кэш-память на несколько килобайт и восемь 32-битовых регистров. Скорость шифрования — примерно 4 машинных такта на байт текста. Для кодирования и декодирования используется 160-битный ключ. Чтобы избежать нежелательной потери скорости по причине медленных операций обработки ключа, SEAL предварительно выполняет с ним несколько преобразований, получая в результате три таблицы определенного размера. Непосредственно для шифрования и расшифрования текста вместо самого ключа используются эти таблицы.
Алгоритм считается очень надёжным, очень быстрым и защищён патентом США № 5454039 с декабря 1993 года.

Sosemanuk


Sosemanuk является новым симметричным ПО — ориентированным потоковым шифром, согласно Profile 1 «ECRYPT call for stream cipher primitives». Длина ключа колеблется от 128 до 256 бит. Начальное значение устанавливается объёмом 128 бит. Как утверждается, любая длина ключа достигает 128-битной защиты. Шифр Sosemanuk использует как основные принципы из потокового шифра SNOW 2.0, так и некоторые преобразования, выведенные из блочного шифра SERPENT. Sosemanuk нацелен на улучшение SNOW 2.0 как в смысле безопасности, так и смысле эффективности. В частности, он использует быструю IV-setup процедуру. Так же необходимо снижение числа статических данных в пользу улучшения производительности на нескольких архитектурах (платформах).
Шифр Sosemanuk использует как основные принципы потокового шифра SNOW 2.0 («Snow» — англ. «снег»), так и некоторые трансформации (преобразования), выведенные из блочного шифра SERPENT («SERPENT» — англ. «змея»). По этой причине его название должно быть связано и со змеёй, и со снегом. Однако хорошо известно, что снежных змей не существует, так как змеи либо засыпают, либо перебираются в тёплые края на время зимы. Кроме того, Sosemanuk — популярный вид спорта, распространенный среди племён Восточной Канады. Идея игры состоит в метании деревянной палки вдоль снежного берега настолько, насколько это возможно. Название происходит из наречия народов и содержит сравнение палки на снегу со змеёй. «Kwakweco-cime win» является одним из названий подобной игры, но оно не звучит соответствующе для названия шифра.

Trivium


Симметричный алгоритм синхронного потокового шифрования, ориентированный, в первую очередь, на аппаратную реализацию с гибким равновесием между скоростью работы и количеством элементов, имеющий также возможность достаточно эффективной программной реализации.
Шифр был представлен в декабре 2008 года как часть портфолио европейского проекта eSTREAM, по профилю 2 (аппаратно ориентированные шифры). Авторами шифра являются Кристоф Де Канньер и Барт Пренел.
Данный потоковый шифр генерирует вплоть до $2^{64}$ бит выходного потока из 80 бит ключа и 80 бит IV (вектора инициализации). Это — самый простой шифр проекта eSTREAМ, который показывает отличные результаты по криптоустойчивости.
Trivium включен в стандарт ISO/IEC 29192–3 в качестве легковесного потокового шифра.
Изначальное состояние Trivium представляет собой 3 сдвиговых регистра суммарной длины в 288 бит. Каждый такт происходит изменение битов в регистрах сдвига путём нелинейной комбинации прямой и обратной связи. Для инициализации шифра ключ K и инициализирующий вектор IV записываются в 2 из 3х регистров и происходит исполнение алгоритма в течение 4×288 = 1152 раз, что гарантирует зависимость каждого бита начального состояния от каждого бита ключа и каждого бита инициализирующего вектора.
После прохождения стадии инициализации каждый такт генерируется новый член ключевого потока Z, который проходит процедуру XOR с следующим членом текста. Процедура расшифровки происходит в обратном порядке — каждый член шифротекста проходит процедуру XOR с каждым членом ключевого потока Z.

VMPC


Это потоковый шифр, применяющийся в некоторых системах защиты информации в компьютерных сетях. Шифр разработан криптографом Бартошем Жултаком (польск. Bartosz Żółtak, англ. Bartosz Zoltak) в качестве усиленного варианта популярного шифра RC4. Алгоритм VMPC строится, как и любой потоковый шифр на основе параметризованного ключом генератора псевдослучайных битов. Основные преимущества шифра, как и RC4 — высокая скорость работы, переменный размер ключа и вектора инициализации (от 128 до 512 бит включительно), простота реализации (буквально несколько десятков строк кода).
Основа шифра — генератор псевдослучайных чисел, базой которого является односторонняя необратимая функция VMPC (англ. Variably Modified Permutation Composition).

FROG


Алгоритм симметричного блочного шифрования c неортодоксальной структурой, один из участников американского конкурса AES, разработка костариканской компании TecApro Internacional.
Алгоритм FROG был создан в 1998 тремя специалистами компании Tecnologia Apropriada (ТесАрго) из небольшого латиноамериканского государства Коста-Рика (неизвестного ранее своими разработками в области криптографии): Дианелосом Георгоудисом (Dianelos Georgoudis), Дамианом Jlepy (Damian Leroux) и Билли Симоном Чавесом (Billy Simon Chaves).
Заявленный на конкурс вариант шифра соответствует требованиям AES, имея блок, равный 128 бит и ключ длиной 128, 192 или 256 бит. Сам алгоритм, теоретически, допускает ключи длиной от 40 до 1000 бит.
Шифр FROG выставила на конкурс международная компания TecApro Internacional, зарегистрированная в Коста-Рике. Разработчики алгоритма — Д. Георгудис (D. Georgoudis), Д. Леру (D. Leroux) и Б. Шаве (B. Chaves) — люди, мягко говоря, мало известные в криптографическом мире. Как утверждают авторы, FROG — это «новый шифр с неортодоксальной структурой». Основу стойкости шифра составляет секретный внутренний ключ сложной конструкции, сами же операции шифрования/дешифрования чрезвычайно просты.
В августе команда TWOFISH (Вагнер, Фергюсон и Шнайер) показали, что ключ шифра FROG можно вскрывать при трудозатратах около 257.
Что же касается стойкости шифров, то этот показатель проверить значительно сложнее. В ходе этапа предварительной оценки первого круга на web-сайте НИСТ и непосредственно на конференции AES2 было представлено значительное количество криптоаналитических результатов, так или иначе «подмочивших» репутацию практически всех шифров-кандидатов. Однако, если не говорить о явных аутсайдерах LOKI, FROG, MAGENTA и HPC, то никаких очевидных с

© Habrahabr.ru