Как мы воспроизвели гениальную Шуховскую башню на Оке в nanoCAD Конструкторский BIM
Гиперболоидная конструкция башен выдающегося русского инженера и конструктора прошлого века Владимира Григорьевича Шухова — прорывная как для своего времени, так и для современности. Шуховские гиперболоиды вдохновляли лучших архитекторов мира — Гауди, Ле Корбюзье, Нимейера, Нормана Фостера.
Однако работы замечательного инженера долго оставались без внимания на его родине, в России.
Мы решили привлечь внимание к уникальному архитектурному и инженерному наследию страны и воссоздали в программе nanoCAD Конструкторский BIM модель Шуховской башни на Оке, — располагая лишь фотографиями и двумя чертежами.
Шуховская башня на Оке, спроектированная в nanoCAD Конструкторский BIM
Реализацией проекта занялся Сергей Стромков, инженер первой категории отдела технической поддержки компании «Арксофт», официального партнера «Нанософт».
Стремящаяся ввысь, легкая и воздушная Шуховская башня на Оке считается даже более совершенной, чем аналогичное строение в Москве. Башня, которая расположилась недалеко от Дзержинска на берегу реки, признана объектом культурного наследия федерального значения и рекомендована к включению в список Всемирного наследия ЮНЕСКО.
Нам, коренным дзержинцам, показалось очень символичным воспроизвести знаменитую гиперболоидную конструкцию, расположенную рядом с нашим городом, разработанную и построенную выдающимся русским инженером. И сделать это в отечественном программном продукте.
Шуховская башня на Оке (фото взято из открытых источников интернета. Профиль DedushkaMPS)
Почему из шести башен на Оке осталась одна
Пятисекционная 128-метровая башня недалеко от Дзержинска — единственная в мире гиперболоидная многосекционная опора линии электропередач. Это лишь одна, последняя из шести ажурных сетчатых конструкций, которые возвышались по обоим берегам Оки на протяжении XX века.
Четыре парные башни высотой 128 и 68 метров на низком берегу и две поменьше — по 20 метров — на высоком служили опорами линии электропередач и помогали освещать Нижегородскую область. Башни были построены с 1927 по 1929 год по проекту и под руководством Владимира Шухова, творца Шуховской теле- и радиобашни в Москве.
Кстати, именно под впечатлением ее постройки Алексей Толстой написал фантастический роман «Гиперболоид инженера Гарина».
Вообще количество изобретений Шухова поражает воображение: от создания первых в мире гиперболоидных конструкций и металлических сетчатых оболочек строительных конструкций до установки термического крекинга нефти, создания морских мин, а также трубчатых паровых котлов, — и это далеко не полный список.
Но вернемся к башням. До нашего времени дожила лишь одна из них, героиня нашего проекта: четыре башни демонтировали после изменения маршрута ЛЭП, предпоследнюю сдали на металлолом, несмотря на статус объекта культурного наследия. Тем важнее было обратить внимание на чудом оставшуюся в живых конструкцию — памятник советского конструктивизма.
Сейчас ею занялись и региональные власти: ведутся работы по укреплению береговой линии (башня стоит на кольцевом бетонном фундаменте диаметром 30 метров непосредственно на берегу Оки, так что течение подтачивает песчаный берег, создавая угрозу повреждения фундамента и обрушения конструкции) и превращению башни в туристическую достопримечательность Нижегородской области.
Процесс воссоздания Шуховской башни в nanoCAD Конструкторский BIM
Чем уникальны гиперболоидные конструкции
Гиперболоидные конструкции — несмотря на свою видимую кривизну — строятся из прямых балок. Это сооружения в форме однополостного гиперболоида или гиперболического параболоида, то есть дважды линейчатых поверхностей: через любую их точку можно провести две пересекающиеся прямые, которые будут целиком принадлежать поверхности.
Вдоль этих прямых и устанавливаются балки, образующие характерную решетку. Такая конструкция является жесткой: если балки соединить шарнирно, она все равно будет сохранять свою форму под действием внешних сил.
Шуховская башня на Оке состоит из пяти 25-метровых секций, по форме являющихся однополостными гиперболоидами вращения. Секции опоры сделаны из прямых профилей, упирающихся концами в кольцевые основания. На верхней секции установлена опорная конструкция с горизонтальной стальной траверсой длиной 18 метров для крепления трех высоковольтных проводов.
Придуманная и впервые разработанная Шуховым, такая конструкция предполагает малое количество материала для постройки, но при этом дает низкую ветровую нагрузку при высокой прочности и большой высоте.
Шуховская башня на Оке — не только памятник архитектуры, но и памятник смелости инженерной мысли, история и память, запечатленные в стали.
Как шла работа над воссозданием башни в nanoCAD Конструкторский BIM
Работа в nanoCAD Конструкторский BIM позволила осмыслить наследие прошлого, понять, как проектировалось и воплощалось уникальное сооружение.
Фотографии и два чертежа
Нам удалось найти всего два чертежа. Один — чертеж нашей башни. В нем содержалась вся информация, достаточная для построения предварительного каркаса и основных элементов конструкции: размеры секций, размеры и количество профилей.
Но не было ничего о верхней конструкции и траверсе. Эту информацию мы нашли на втором чертеже, который относился к не сохранившейся 68-метровой башне. Конструкцию колец основания секций пришлось строить по фотографиям с учетом некоторых данных из чертежа. Также по фотографиям создавались узлы крепления конструкции и другие элементы, которых нет на чертеже общего вида.
Сохранившиеся чертежи Шуховской башни на Оке
Как построить одну секцию башни…
Очень хотелось прикоснуться к этому чуду инженерной мысли. Поначалу меня просто пугала сложность конструкции башни Шухова. Но, приступив к работе, я разбил проект на небольшие понятные задачи и, последовательно решая одну за другой, постепенно пришел к поставленной цели. nanoCAD Конструкторский BIM показал себя как надежный и умный помощник.
Главной задачей проекта стало построение модели, которая максимально соответствовала бы реальной конструкции в принципиально важных моментах — в конструкции секции, а точнее в проработке наклонных образующих профилей.
Наиболее сложным и интересным было построить одну секцию, а значит понять все особенности профилей секций, образующих гиперболоидную конструкцию. При построении скелета конструкции использовались простые примитивы наподобие отрезков и окружностей с нулевой толщиной. Это простая задача, которая сразу позволила визуализировать гиперболоидную конструкцию и уже на этом этапе дала довольно впечатляющий результат.
Процесс создания каркаса секции
Однако дальше надо было задать отрезкам форму, учитывая, что эта форма — уголок с определенным положением в пространстве и ориентацией граней. Оказалось, что простая балка не может быть положена на отрезок так, чтобы в обоих основаниях получился требуемый узел. Более того, визуально пересекающиеся отрезки в каркасной модели имеют идеальное касание в одной точке, но в объемной модели уголки образуют жесткие коллизии друг с другом.
После детального изучения вопроса подтвердились догадки о том, что каждый профиль, являясь прямым, тем не менее торсионно завинчивается вдоль оси. Это позволяет полке профиля подходить к обоим основаниям по касательной, а с пересекающимися профилями соприкасаться полками — между пересекающимися профилями дополнительно вставлена пластина, компенсирующая незначительную взаимную непараллельность соприкасающихся полок.
Построение соединительных профилей
В результате решено было использовать два способа: выдавливание по спиральной траектории и выдавливание с переходом. Первый способ потребовал довольно трудоемкой подготовки: следовало правильно расположить сечение выдавливания относительно начала профиля, что довольно нетривиально, и задать спираль выдавливания, которая имеет большую длину, но при этом в ней нет даже четверти витка. Второй способ дал практически моментальный результат: указываешь начальный профиль сечения у нижнего основания, конечный профиль у верхнего основания — и вуаля, профиль завинчен. Построение остальных секций — дело техники.
… и как соединить секции между собой
Второй важной задачей стало построение узлов соединений, для чего требовалось обеспечить точные количественные показатели: метраж, крепеж и другие.
При кажущейся простоте конструкции в ней достаточно много необычных элементов.
Это гнутые профили в кольцах оснований, завинчивающиеся профили, образующие гиперболическую конструкцию, составные профили.
Моделирование образующего профиля
При моделировании верхней конструкции с траверсой приходилось часто менять ПСК и внимательно следить за многочисленными элементами конструкции, образующими паутину. Сама траверса требовала пристального внимания буквально к каждому профилю.
В работе над моделью башни такие, казалось бы, нехитрые инструменты, как сетка осей, круговой массив, деление отрезка на равные части позволили за считанные минуты отстроить каркас. А база данных элементов, конструктор оборудования и выдавливание по криволинейной траектории так же быстро превратили каркас в объемную конструкцию, позволив в подробностях увидеть каждый элемент сопряжения, проработать десяток черновых вариантов, рассмотреть свои ошибки и практически сразу исправить их. Имея в руках такой удобный инструмент, как nanoCAD Конструкторский BIM, сложно представить, как инженеры начала прошлого века создавали подобные проекты на бумаге.
Сборка конструкции
Что дальше
Этот проект дал импульс развитию и оптимизации самой программы nanoCAD Конструкторский BIM. Все задачи, которые были поставлены на первом этапе создания модели Шуховской башни, решены. Сейчас в модели еще нет некоторых узлов крепления элементов конструкций между собой, но работа над ее созданием продолжается и будет доведена до конца.
Часть этих задач дала разработчикам понимание, в каком направлении нужно вести работы над улучшением инструментов nanoCAD Конструкторский BIM и расширением его функциональности. Например, обратили внимание на завинчивание прямолинейных элементов из базы данных.
Работа в nanoCAD Конструкторский BIM — это возможность развивать и поддерживать инновационные решения в проектировании, изучать, хранить и применять опыт предшественников уже на новом уровне. Полет инженерной мысли соединяет времена и вдохновляет на творчество, а потенциала Шуховских конструкций хватит еще на много лет вперед.
Сергей Стромков,
инженер первой категории
отдела технической поддержки
компании «Арксофт»
Приглашаем 6 октября принять участие в вебинаре, посвященном выходу новой версии nanoCAD Конструкторский BIM 2.0. Регистрируйтесь и приходите!