Как мы делали самую большую катушку Тесла в России
Историческая справка
XIX век был этакой эпохой дикого Запада в экспериментальной физике электромагнетизма. Роберт Ван де Грааф, лорд Кельвин, Никола Тесла и многие другие учёные, исследователи и инженеры открывали всё новые и новые явления, а затем масштабировали производящие их установки до колоссальных размеров. Некоторые из их творений функционируют до сих пор — например, шестиметровый гигантский генератор Ван де Граафа в Бостонском музее науки, а некоторые, как широко известная башня Уорденклифф, так никогда и не появились на свет.
С течением времени и развитием науки и техники внимание учёных переключилось на другие направления, но отдельные энтузиасты продолжали собирать, изучать и совершенствовать классические разработки в области высоких напряжений, электростатики, физики плазмы — кто-то вследствие неугасающей веры в теорию эфира и бесплатную энергию, кто-то из любопытства, или для решения узкоспециальных прикладных задач, кто-то просто потому что ему это доставляло.
В последнее время, примерно с конца 90-х годов, эта отрасль инженерных задач переживает ренессанс, связанный с интересом шоу-бизнеса и индустрии развлечений к притягивающим внимание разрядам катушек Тесла, усилившийся в последнее десятилетие после изобретения DRSSTC, которая на настоящий момент представляет собой наиболее технически совершенный вид катушки Тесла, использующий вместо классического искрового разрядника силовые транзисторы, что позволяет быстро — в течение нескольких периодов колебаний — менять частоту появления разряда (BPS) и, как следствие, воспроизводить музыку непосредственно при помощи появляющихся молний. Один из примеров — известная серийная модель OneTesla, которая, при всей непродуманности предлагаемого авторами конструктора, вполне работоспособна при определённом приложении рук.
На настоящий момент трансформаторы Тесла и родственные им устройства (лестницы Иакова, генераторы Маркса и Кокрофта-Уолтона, плазменные колонны, генераторы Ван де Граафа и т. д.) разных размеров и зрелищности используются на постоянной основе в ряде организованных вокруг них шоу-проектов в США (Arc Attack), России (TeslaFX), Великобритании (Lords of Lightning), Китае (увы, иероглифам не обучен) и других странах, периодически светятся в шоу-бизнесе (спецэффекты в Гарри Поттере, Ученике Чародея, концерты Металлики и пр.), а также присутствуют в качестве экспоната в каждом уважающем себя музее науки.
Размер имеет значение
Короче говоря, в один момент группа инженеров-любителей, давно и прочно погрязших в коллективном тесластроении, решила, что играть в песочнице, делая небольшие комнатные (и даже среднеразмерные уличные) катушки, им уже скучно, и решила сделать что-то особенное. На тот момент у нас уже было (как нам казалось) достаточно опыта в разработке катушек Тесла различных топологий и имеющаяся математическая модель допускала масштабирование типовой конструкции в несколько раз. По факту, единственными явно заметными ограничениями были габариты доступного помещения, мощность розетки, и финансы (хотя, чего уж там, в итоге всё упирается в финансы). Прикинув бюджет, человекочасы и прочие скучные мелочи, было решено ограничиться габаритами установки примерно в три метра высоты, с расчётной мощностью около 30–40 кВт. Для разбирающихся в вопросе —
- Технология: DRSSTC
- Общая высота: 3.3 метра
- Общая масса: ~130 кг
- Питание: 3ф 380 В
- Резонансная частота: ~50 кГц
- Габариты вторичной обмотки: 310×1800 мм, провод 1.06 мм
- Топология силовой части: полный мост, транзисторы CM600DU-24NFH
- Пиковая потребляемая мощность: ~35 кВт
- Пиковая мощность в контуре: ~2 МВт
- Пиковый ток в контуре: 3800 А
- Ёмкость первичного контура: 1.2 мкФ
- Ёмкость электролитов инвертора: 18000 мкФ, 900 вольт
- Максимальная зарегистрированная длина разряда: 6 метров
Технология, разумеется, была выбрана именно DRSSTC, поскольку при правильном подходе и отсутствии ошибок её стоимость (а также массогабариты) оказывается значительно ниже, чем у других вариантов (искровой разрядник или радиолампа) при тех же конечных параметрах. Ну и ещё, конечно же, на ней можно играть музыку.
Модульный принцип
При первичной проектировке достаточно крупной катушки Тесла проект можно разбить на несколько модулей (первичная обмотка, вторичная обмотка, тороид, корпус, силовой инвертор, драйвер, пульт управления, вспомогательная электрика и т. п.), каждый из которых придумывается и изготавливается в отдельности, после чего они собираются вместе, последовательно настраиваются и отлаживаются в процессе, и в итоге взрываются начинают испускать молнии. Обычно большинство трансформаторов Тесла собираются энтузиастами в одиночку от начала до конца, но у нас, во-первых, уже имелась более-менее слаженная команда с распределением функций (проект-менеджер, проектировщик, разработчик (он же тестировщик), и несколько человек на подхвате — монтажник, слесарь и так далее), а, во-вторых, сама по себе задача стояла довольно амбициозная, и хотелось сделать её без лишних расходов, но при этом более или менее качественно, насколько это возможно для прототипной и уникальной конструкции. Поэтому каждый мог заниматься своим делом, параллельно общаясь для синхронизации модулей между собой, а я, будучи этим самым проект-менеджером, могу рассказать про каждый из модулей по отдельности, а также показать, что получилось в итоге.
Подготовка и материалообработка
После обсуждения, осмысления и различного словоблудия по теме, общий концепт был утверждён коллективным решением и я изобразил примитивный эскиз в 3ds max. Эскиз был нужен для осознания масштабов задачи, понимания основных взаимных пропорций модулей, в качестве отправной точки для проектировки и для поднятия боевого духа команды. На основе эскиза проектировщик собрал проект в Creo Elements (тогда ещё Pro/Engineer), уже с соблюдением конкретных размеров, способов соединения деталей между собой и прочими нюансами. По результатам этого проекта были созданы чертежи: деталей корпуса, основания первичной обмотки, тороида, коробки для автоматики и электрики, а также блока конденсаторов первичного контура (MMC).
В качестве конструкционных материалов мы использовали стеклотекстолит толщиной 18 мм, обработанный методом гидроабразивной резки (ввиду его высокой конструкционной и термической устойчивости, другие методы обработки оказались нерентабельны), толстую фанеру для корпуса и алюминиево-пластиковый композит для блока автоматики (для экранировки от создаваемого катушкой мощного фронта электромагнитных помех, пагубно влияющего на её же собственные управляющие схемы), а также поликарбонат в ряде мест. Фанеру и пластик обрабатывали на ЧПУ фрезере, имевшемся во владении соседа по заводику, где наш коллектив занимался всем этим непотребством. Creo Elements позволяет создавать сразу готовые управляющие программы для ЧПУ, что очень сильно помогло в процессе — мы просто, по факту, арендовали станок и делали на нём что надо когда надо.
Первичка и вторичка
Вторичную обмотку намотали на классическом каркасе — большой оранжевой канализационной трубе из ПВХ (серьёзно, это лучший из имеющихся вариантов для катушек Тесла любых габаритов по соотношению цены, доступности и соответствия задаче). Намотанный виток к витку эмалированный провод (диаметр 1.06 мм) в один слой, покрытый затем эпоксидной смолой, превратил трубу в огромного размера индуктор, с нетерпением ожидающий своей минуты славы — вторичку гигантской катушки Тесла. Итоговые габариты трубы получились 310×1800 мм.
Первичную обмотку — тоже классика — мы намотали медной трубкой для кондиционеров, диаметром 22 мм (7/8 дюйма). Витки аккуратно ложились в пазы, вырезанные в стеклотекстолите струёй воды с абразивом под давлением в тысячи атмосфер, и вот уже два модуля, первичка и вторичка — скелет любой катушки Тесла — соединились друг с другом. Проект понемногу обретал форму и цвет.
Тороид
С тороидом, необходимым элементом любой мощной катушки Тесла, однако, всё оказалось сложнее. Изначально предполагалось также последовать проверенной дорогой и использовать алюминиевую гофру для вентиляции. На практике же обнаружилось, что это чрезвычайно одноразовое решение — гофра мгновенно мнётся от любых неосторожных движений, и при планируемых габаритах её придётся заменять при каждой транспортировке устройства.
Поэтому, после некоторого исследования вопроса, я украл идею наткнулся на один любопытный вариант в Сети, а проектировщик смоделировал его с учётом наших масштабов и выдал проект для сборки. Дело в том, что основное требование к тороиду катушки Тесла — это его «гладкость» с точки зрения электромагнитных полей, поскольку любые заострения или неровности представляют собой точки формирования коронного разряда, который вызывает пробой воздуха раньше, чем достигается максимальная мощность, а, кроме того, забирают на себя часть полезной длины молнии. Но здесь есть один нюанс, связанный с тем, что силовые линии поля как бы обтягивают тороид эквипотенциальными зонами, вследствие чего его можно собрать из составных частей, которые, будучи сложены вместе правильным образом, образуют при работе катушки Тесла поле достаточно гладкое, чтобы предотвратить появление разряда там, где не надо.
В общем, результат оказался очень необычным внешне, относительно простым в производстве, надёжным в эксплуатации и на удивление эффективным в сравнении с другими известными вариантами исполнения этой важной части катушки Тесла. Диаметр алюминиевой трубы — 50 мм, а общий размер всей получившейся штуки, напоминающей НЛО — около двух метров в диаметре. Круги-проставки для трубок вырезали из фанеры всё на том же ЧПУ-фрезере, а центральную раму я сварил из стального уголка.
На этом, в принципе, конструкционная часть была закончена.
Силовая часть
В силовом инверторе для больших катушек Тесла часто используются IGBT-модули — этакие чёрные (или белые) кирпичики с двумя-тремя (иногда до 10) силовыми клеммами и несколькими выводами для управления, штатно используемые в силовых инверторах — мощные блоки зарядки, трансформаторные подстанции, частотные преобразователи для двигателей, электротранспорт и т. п. Вследствие большого размера кристалла, эти модули оказываются способны выдержать значительную кратковременную перегрузку по рабочему току (до 10 раз от номинального), что чрезвычайно выгодно в импульсном инверторе катушки Тесла по DRSSTC-технологии, поскольку рабочий цикл (время, в течение которого происходят колебания в контурах и через транзисторы течёт ток, разогревающий их кристаллы), в нём обычно составляет около 5–10%. Но, с другой стороны, абсолютное большинство этих IGBT-модулей рассчитаны на рабочие частоты порядка единиц, реже десятков килогерц (впрочем, в последнее время ситуация улучшается и современные модули могут работать до 100 кГц). Использование их на большей частоте часто ведёт к проблемам с управлением затворами, перегреву и взрывам (куда ж без взрывов).
Стоимость одного модуля, даже б/у, может быть сравнительно велика (от единиц до сотен тысяч рублей), так что мы решили перестраховаться и поставить с запасом по импульсному току два модуля CM600DU-24NFH (600 ампер непрерывного тока, 1200 вольт, два транзистора в полумостовом включении) по схеме «полный мост» (как известно, полный мост делается из двух полумостов — К. О.), или просто «мост». Посаженные на соответствующий их габаритам радиатор через пару чайных ложек термопасты КПТ-8, они были соединены медными шинами и снабжены необходимым обвесом — силовыми электролитическими и плёночными конденсаторами.
В придумывании актуального способа соединения этих деталей между собой есть масса хитрых эмпирических ноу-хау, призванных сократить риски и максимизировать надёжность подобных конструкций, но поля этой записи слишком узки, чтобы я мог рассказать про них, если вы понимаете о чём я. Не было никаких гарантий, что получившаяся штука не взорвётся при первой же попытке её включить, но на тот момент это казалось приемлемым риском.
Автоматика и электрика
Управляющая электрика не содержала в себе ничего особенно интересного. Нужно было обеспечить плавную зарядку электролитов (чтобы они не выбивали автоматы в щитке в момент включения установки) — с этим справились автоматический пускатель (по сути, большое силовое реле) и несколько силовых резисторов.
Диодный мост на 150 ампер выпрямлял сеть (кстати, вся конструкция создавалась, конечно же, под трёхфазное питание, с чем была связана масса разных интересных открытий — раньше мы не делали ничего под три фазы, тем более такой мощности), вентиляторы обдували диодный мост и заодно радиатор силовой части, а лампочки на передней панели изображали светофор, любезно сообщая, когда можно трогать части катушки руками, когда лучше не стоит, и когда желательно оказаться от неё на максимально возможном расстоянии, чтобы не словить разряд в макушку.
Драйвер
Управляющий драйвер — это отдельная тема, и, возможно, мне когда-нибудь про неё удастся рассказать подробнее. Основное его назначение — подавать в нужные моменты управляющий сигнал на затворы транзисторов, включая их и выключая таким образом, чтобы поддерживать и усиливать возникающие в первичном контуре колебания, при этом модулируя их с подаваемой ему на вход с пульта управления частотой (именно это необходимо для воспроизведения мелодий на катушках Тесла). Ну, ещё там есть масса разнообразных функций, которые оптимизируют этот процесс и обрабатывают все исключения (типа превышения максимально разрешённого тока для транзисторов — OCD, защиты от перегрева и так далее), детектор фазы, т. н. предиктер, обеспечивающий переключение транзисторов в нуле тока, и прочие вещи, совершенно необходимые для работы инвертора катушки Тесла. Его актуальная схемотехника (а также разводка платы, фотографии платы, сведения об используемых компонентах и о факте существования этой платы) является интеллектуальной собственностью разработчика, и потому я не смогу ей поделиться, но даже если бы и мог, боюсь, мне не хватит понимания и профессионализма, чтобы внятно рассказать про неё. Катушку Тесла очень легко описать при помощи аналогий на пальцах, но корректная с точки зрения разработки электроники математическая модель чрезвычайно сложна и содержит массу неочевидных тонкостей (так же, как и с силовой частью), поэтому большинство тесластроителей просто используют набор эмпирических правил и готовых решений при постройке своих катушек, что в нашем случае было неприменимо. В сети есть масса статей про принципы функционирования DRSSTC, а также открытых (и закрытых, но доступных для покупки) проектов драйвера, например у китайского коллеги Loneoceans — желающие могут ознакомиться подробнее там.
MIDI-пульт
Пульт управления (также известный как интерраптер) представлял собой простой MIDI синтезатор с несколькими примитивными настройками, принимавший на вход миди файлы (или данные с регуляторов-крутилок) и выдававший наружу через оптический кабель управляющий сигнал для драйвера. С ним, в принципе всё было просто и понятно, потому что мы решили не тратить время на разработку того, что можно купить, и просто так и поступили — купили готовый. Он, конечно же, оказался глючным полуфабрикатом, но зато сэкономил сотни человекочасов по исследованию миди-протокола, изготовление платы, отладку микроконтроллера и отлавливание неизбежных багов. Главное, что со своей задачей он на тот момент справлялся отлично. Пульт был приобретён у американского коллеги-тесластроителя, и на тот момент это был единственный продающийся пульт с поддержкой SD карты, то есть способный воспроизводить музыку без внешнего MIDI устройства или ноутбука. Это было критичным, поскольку имелись закономерные опасения, что помехи от работы такой большой катушки намертво подвесят всю электронику в некотором радиусе от неё, а подвисание какой-нибудь миди-клавиатуры, разработчики которой в страшном сне не могли предусмотреть подобный уровень паразитных сигналов, если этам клавиатура управляет той самой катушкой Тесла, которая наводит на неё помехи, чревато неконтролируемой положительной обратной связью и, как следствие… правильно, взрывами. Взрывов мы не хотели.
Поскольку продавался пульт в виде распаянной и прошитой платы с россыпью выносных деталек, нам пришлось разработать к ней корпус, куда встали бы сама плата, питание, четыре энкодера, четыре кнопки, дисплей и многочисленные разъёмы (четыре оптопередатчика, MIDI вход, USB вход, слот для SD карты). По ходу дела обнаружилась масса разного рода недоработок автора, в частности, отсутствие какого-либо контроля питания (питать от «Кроны»? Литий-ион? не, не слышал), что пришлось исправлять и доделывать, чтобы этим можно было пользоваться по назначению. Получившаяся в итоге химера, несмотря на ряд отвратительных глюков при некоторых неудачных условиях, успешно справляется с основной задачей и по сей день. Фотографии его у меня как-то не нашлось, но его можно заметить на одном из кадров ниже, в параграфе «первичная проверка» — чёрная коробочка рядом с силовым кабелем в правой части снимка. Ещё есть кадр из видео от автора схемы и прошивки — вот он.
Конденсаторная батарея
В качестве резонансного конденсатора мы выбрали силовые плёночные конденсаторы одного из отечественных производителей, специально разрабатывавшиеся (если верить каталогу производителя) для импульсных режимов работы. Пять штук общей ёмкостью около 1.2 мкф, и максимальным напряжением 20 киловольт, соединённые медной шиной с латунными винтами. Латунного крепежа, кстати, на весь проект ушло значительное количество — из-за огромных токов в килоамперы, в сочетании с мощным магнитным полем от первичной обмотки, и стальной оцинкованный и нержавеющий крепёж моментально разогреваются докрасна, что может в итоге приводить к незапланированным спецэффектам (да-да, взрывам). Поэтому и в ошиновке конденсаторов, и вообще во всех силовых соединениях в первичном контуре пришлось использовать только медь и латунь. Первые же тесты показали наивность попыток поставить туда что-то ферромагнитное и/или недостаточно хорошо пропускающее электрический ток.
Первичная проверка
Следующим этапом была настройка драйвера. Для этого достаточно собрать в одно целое первичный контур (конденсаторную батарею, первичку и мост), подключить к транзисторам моста драйвер и плавно начать подавать напряжение, отслеживая на осциллографе формы сигналов в различных участках схемы. Если всё сделано правильно, то в первичном контуре возникает автогенерация на расчётной частоте (в нашем случае около 50 кГц). Вторичка при этом не нужна, и никаких разрядов не возникает, но собираемых данных достаточно, чтобы настроить предиктор, OCD и заметить ошибки в монтаже или выбранных параметрах деталей. Эта часть оказалась простой и лёгкой (кстати, в таком режиме первичная обмотка вполне может работать как индукционная плита для приготовления пищи — есть прецеденты жарки яичницы на сковороде, стоящей поверх первички), и мы отправились вместе с почти родившимся детищем в один большой и полузаброшенный цех заводика, чтобы проверить наконец наше творение in vivo.
Проверка оказалась быстрой, яркой и немного предсказуемой: выдав несколько четырёхметровых разрядов, катушка Тесла сказала «вы мне надоели, я ухожу» и прекратила работать с громким хлопком где-то внутри корпуса. Последующее исследование этого феномена показало, что в процессе подбора оптимальной частоты мы ошиблись на один виток первичной обмотки, и возникшего рассогласования при переключении транзисторов оказалось достаточно, чтобы они, как это говорят на профессиональном тесластроительном арго, насиланили, то есть пришли в полную негодность ввиду перехода содержащегося в них кремния в газообразное состояние (как в том анекдоте, что транзисторы работают, мол, на волшебном дыме — когда он выходит, они работать перестают). Запасной комплект транзисторов остался в лаборатории, и остаток отведённого времени мы вяло переругивались друг с другом и запускали другие взятые с собой катушки Тесла в рамках репетиции к фестивалю GEEK PICNIC (под который был приурочен релиз проекта).
Для чего же всё это было?
Ну, а дальше было немного работы над ошибками, суматошные сборы, прибытие на Елагин остров, где традиционно проходит в Питере упомянутый GEEK PICNIC, ночные тесты перед днём фестиваля нашей катушки, уже с новым трубчатым тороидом и на полную катушку (простите за намеренную тавтологию). На следующий день были час X (в течение которого около пятнадцати минут мы прыгали всей толпой вокруг не желающего запускаться шедевра, пока не обнаружили косяк монтажа — трансформатор тока был подключен не в той фазировке), Вивальди, Имперский марш и Марио на молниях, снимающие это всё квадрокоптеры с камерами, полтысячи зрителей, взиравших на происходящее кто с восхищением, кто с удивлением, кто равнодушно-непонимающе, кто через экраны своих смартфонов и планшетов, несколько запусков на бис при дневном свете, где разряд был едва заметен (зато слышно было прекрасно) и — уже после окончания фестиваля, но до закрытия парка — несколько минут работы самой большой музыкальной катушки Тесла в России в летних сумерках, которые до сих пор иногда встают у меня перед глазами.
Держать в руках пульт от такой штуки и смотреть на почти настоящие шестиметровые молнии, угрожающими тентаклями взрезающие воздух, возникающие и изменяющиеся по движению твоих пальцев — это до сих пор одно из самых моих сильных воспоминаний за девять лет работы над катушками Тесла и спецэффектами высоких напряжений. Но, увы, ничто не вечно, и возмущённый происходящим (мол, люди уходить не хотят пока вы тут развлекаетесь) охранник парка потребовал сворачивать лавочку и выкатываться, что и пришлось осуществить.
К сожалению, с тех пор у нас так и не получилось ни разу запустить эту катушку Тесла снова. Мы переработали проект силовой части, проапгрейдили драйвер, значительно продвинулись в понимании принципов работы всего этого дела, но отсутствие площадки, пригодной для проведения подобных экспериментов, увы, всё ещё является труднопреодолимым и дорогостоящим препятствием. Катушка лежит в виде составных частей у меня дома и ждёт своего часа. Когда-нибудь я снова её включу. А может и не её, а новую, ещё раза в два-три больше. Кто знает.
Видео запуска:
Это мой первый пост на Гиктаймс. В случае положительной критики планирую в дальнейшем рассказать про ряд других интересных проектов смежной тематики. Если вы заметили в тексте или оформлении нарушения каких-либо гласных или негласных правил или рекомендаций сообщества Гиктаймс, прошу указать мне на них для исправления и учёта в будущем.