ИИ и машинное обучение в медицине
Одним из важнейших факторов, влияющих на развитие человеческого общества в ближайшие годы, станет искусственный интеллект (ИИ). В это понятие мы вкладываем все направления развития сферы, включая машинное обучение (Machine Learning, ML), генеративно-состязательные сети (Generative Adversarial Networks, GAN), градиентный бустинг (Gradient-boosted-tree models, GBM), глубокое обучение с подкреплением (Deep Reinforcement Learning, DRL) и т.д.
Бизнес, технологический сектор, а также здравоохранение — это те области, где ИИ особенно востребован. Давайте посмотрим, как инструменты AI/ML способны повлиять на качество оказания медицинских услуг.
Прим.: Cloud4Y подготовил статью из трёх частей, посвящённых связке ИИ и медицины. Первые две рассказывают о возможностях технологии, а третья посвящена проблемам, которые возникают при реализации этой идеи.
Идея использования искусственного интеллекта в медицине восходит к 1972 году, когда заработал MYCIN Стэнфордского университета. Это была программа-прототип ИИ, используемая для изучения вопроса заражения крови. Ранние исследования ИИ продолжались в основном в американских учреждениях (совместно работали MIT-Tufts, активно развивали технологию в Стэнфорде и Ратгерском университете. В 1980-х годах Стэнфордский университет продолжил свою работу в области искусственного интеллекта в рамках проекта «Медицинский экспериментальный компьютерно-искусственный интеллект в медицине» (SUMEX-AIM).
Благодаря росту вычислительной мощности и появлению новых технологий искусственного интеллекта, работа в этом направлении стала намного более активной. Регулярно появляются новости об очередном научном открытии, сделанном с помощью нейросетей и машинного обучения. Что интересного можно рассказать о возможностях и перспективах ИИ в медицине на сегодняшний день?
ИИ в радиологии
Многочисленные данные медицинской визуализации в изобилии хранятся в небольших локальных системах. Но что, если использовать глубокое обучение, загрузив данные в облако и «скормив» их ИИ? Машины и алгоритмы могут эффективно интерпретировать данные визуализации, выявляя закономерности и аномалии.
Самый очевидный вариант использования: ассистент радиолога/рентгенолога, занимающийся выявлением и локализацией подозрительных образований на коже, повреждений, опухолей, внутренних кровоизлияний, образований на мозге и т.д. Компьютер работает быстрее и точнее, а потому способен выдать конкретные данные о заболевании спустя несколько секунд после обработки информации. Человек так не может.
Есть и другой момент. Высококвалифицированные специалисты стоят дорого, и на них колоссальный спрос. Они испытывают нешуточное давление, буквально увязая в потоках данных, которые сыплются на них со всех сторон. Если верить этой статье, такой специалист должен выдавать диагноз каждые 3–4 секунды. Машинный интеллект может повысить квалификацию обычного специалиста, помогая ему разобраться в сложных ситуациях. Тем самым уменьшая количество ложных диагнозов и спасая жизни людей.
Выявление редких или трудно диагностируемых заболеваний часто зависит от опыта врача, а также степени «запущенности» болезни. Проще говоря, пока болячка не полезет наружу, её могут и не распознать. Обучив компьютер на больших наборах данных, содержащих необработанные изображения и множество форм патологий, сопутствующих тем или иным заболеваниям, можно повысить качество постановки диагнозов и количество выявленных заболеваний. Такую идею разрабатывает стартап AIDOC.
ИИ способны повысить качество работы медучреждений, автоматизировав трудоёмкую и ответственную часть работы врачей. С помощью компьютерных алгоритмов можно также контролировать эффективность лечения и качество выполненной операции, прогнозировать скорость восстановления организма.
Хорошим примером такой технологии является проект Microsoft InnerEye. Он предлагает использовать методы ML для сегментации и идентификации опухолей с использованием 3D-рентгеновских снимков. Это может помочь в точном планировании операции, навигации и эффективном формировании контуров опухоли для планирования лучевой терапии.
Также нужно заметить, что МРТ и другие современные системы визуализации, используемые для раннего выявления рака, работают с ML. Алгоритмы помогают проводить расширенный анализ изображений. Например, выполнить сегментацию предстательной железы или совместить несколько разных снимков (например, УЗИ, КТ и МРТ) для получения более точной картины. Машинный интеллект также способен распознать онкологию во время плановых медицинских процедур и даже хирургическом вмешательстве (часто бывает, что во время операции остаётся незамеченным ещё одно злокачественное образование).
ИИ в патологии
Патологическая диагностика включает исследование среза ткани под микроскопом. Использование Deep Learning для обучения алгоритма распознавания изображений в сочетании с человеческим опытом обеспечит более точную диагностику. Анализ цифровых снимков на уровне пикселей может помочь в обнаружении патологических изменений, которые человеческий глаз легко может пропустить. И это обеспечит более эффективную диагностику.
Такую технологию разрабатывает, к примеру, медицинская школа Гарварда. Алгоритм использует технологию распознавания речи и изображений для распознавания снимков с патологиями и обучает компьютеры различать раковые и не раковые образования. Сочетание этого алгоритма с работой человека привело к точности 99,5%.
Машинное обучение и медицинская наука
Во всевозможных медицинских учреждениях генерируются петабайты данных. Эти данные, к сожалению, обычно являются беспорядочно разбросанными и неструктурированными. Это ни в коем случае не упрёк в сторону врачей. Им приходится не столько лечить, сколько отчитываться о лечении. Однако хаос здорово мешает в планировании и глобальном наблюдении за здоровьем отдельно взятой страны или мира в целом.
Дополнительная сложность заключается в том, что в отличие от стандартных бизнес-данных, данные пациентов не слишком-то хорошо поддаются простому статистическому моделированию и аналитике. Мощная облачная платформа с поддержкой ИИ, имеющая доступ к медицинским БД, способна эффективно анализировать смешанную информацию (например, патологию крови, генетические особенности, рентгеновские снимки, историю болезни). Она же (теоретически) способна анализировать входные данные и выявлять скрытые закономерности, которых не видно из-за чересчур большого объёма медицинской информации.
Интерпретируемые модели ИИ и распределённые системы машинного обучения отлично подходят для этих задач. Они позволят не только эффективно развивать медицинскую науку, находя новые закономерности и расовые/половые/возрастные особенности людей, но формировать более точные данные о состоянии здоровья населения в конкретных регионах.
Хирургические роботы-ассистенты
Уже сейчас многие операции проводятся с помощью компьютерного зрения и манипуляторов, которыми управляет хирург. Это значимая часть развития медицинских технологий, нивелирующая фактор человеческой усталости и повышающая эффективность процедур. Роботы с ИИ способны здорово помочь обычным хирургам. Например:
- Контролировать работу врача, выполняя роль страховки на случай невнимательности;
- Улучшать видимость для хирурга, напоминать ему о последовательности действий во время процедуры;
- Создавать точные, минимально инвазивные разрезы тканей;
- Снижая уровень боли для пациента за счёт подбора оптимальной геометрии разреза и накладываемого шва.
Но для успешной реализации такого проекта необходимо накопить опыт. Разработать ПО для взаимодействия робота и хирурга. Собрать массив информации, основанной на реально проведённых операциях (как с участием только людей, так и связки человек+робот).
Хорошим вариантом может стать генерация компьютером пространства виртуальной реальности для управления действиями хирурга в режиме реального времени. Также можно использовать телемедицину и удалённую хирургию для проведения относительно несложных операций.
Что ещё полезного можно почитать в блоге Cloud4Y
→ Искусственный интеллект поёт о революции
→ Какова геометрия Вселенной?
→ Нужны ли облака в космосе
→ Пасхалки на топографических картах Швейцарии
→ Microsoft предупреждает об опасности новых атак с помощью шифровальщика PonyFinal
Подписывайтесь на наш Telegram-канал, чтобы не пропустить очередную статью. Пишем не чаще двух раз в неделю и только по делу.