Геометрия кубических уравнений. Лекция Сергея Львовского в Яндексе
Ещё из школьного курса алгебры все знают, как определить количество корней в квадратном уравнении. Оказывается, на аналогичный вопрос о кубическом уравнении проще всего ответить, перейдя от алгебры к геометрии, а решать само уравнение для этого вовсе не обязательно. Важная геометрическая конструкция, о которой пойдет речь на лекции, используется в математике и для других целей. Начнем мы издалека, с квадратных уравнений. Возьмем простое уравнение: x2+px+q=0. Теперь определим, сколько у него корней в зависимости от p и q. Два корня у нас будет в том случае, если p2–4q>0. Если же p2–4q<0, то у нашего уравнения будет 0 корней. Ну и в промежуточном варианте p2-4q=0 будет один корень. Теперь рассмотрим подобное кубическое уравнение: x3+ax2+bx+c=0. И поставим такой же вопрос: сколько корней будет у уравнения, в зависимости от a, b и c. Формула для корней кубического уравнения была открыта еще в XVI веке, однако понять с ее помощью, сколько у уравнения может быть корней, достаточно затруднительно, и сегодня мы ей пользоваться не будем. Мы постараемся узнать, сколько у уравнения корней, формулы для них не находя. Конспект лекции