Энергия из черных дыр – выдумка или реальность?
Кадр из фильма «Интерстеллар» (2014 г.) — черная дыра Гаргантюа
Черные дыры поглощают космические объекты и излучают колоссальное количество энергии. Казалось бы, вон он, идеальный источник чистой энергии, который нужен человечеству. Но есть ли шанс как-то к нему «подключиться»? Ученые уже задаются этим вопросом и недавно выработали новую стратегию, как осуществить этот замысел.
За плечами человечества — годы изучения феномена черных дыр, в том числе их механизмов излучения энергии. Сейчас астрономы в разы лучше понимают их природу и могут предлагать варианты полезного использования их ресурсов. Конечно, не стоит забывать, что предлагаемые технологии — концепты, реализация которых возможна через десятки, если не сотни, лет. Но, если есть возможность разработать хотя бы теоретическую основу получения энергии из черных дыр уже сейчас, — почему нет?
«Черные дыры обычно окружены горячим «супом» из плазменных частиц, несущих магнитное поле, — объясняет астрофизик Лука Комиссо из Колумбийского университета. — Наша теория показывает, что, когда силовые линии магнитного поля разъединяются и снова соединяются правильным образом, они могут ускорять частицы плазмы до отрицательных энергий, благодаря чему из этого «супа» может быть извлечено фантастическое количество энергии».
Процесс возбуждения плазмы может достичь 150%, что делает черные дыры в разы эффективнее любой электростанции на Земле.
Что даст человечеству изучение процесса добычи энергии от черных дыр?
Осталось дело за малым — придумать, как осуществить полет до черной дыры и разместить что-то в ее эргосфере, не попав за горизонт событий. В ближайшем будущем человечество едва ли сможет добывать энергию подобным способом, но это не означает, что исследования бесполезны.
Помимо непосредственной «выкачки» энергии, изучение черных дыр позволит лучше понять происхождение вспышек рентгеновского излучения от черных дыр, представляющих собой огромные выбросы излучения в космос. Исследование таких явлений помогает проектировать космические зонды и корабли с учетом агрессивных факторов космической среды.
Современные теории по добыче энергии из черных дыр
В 1969 году физик и математик из Оксфордского университета Роджер Пенроуз представил публике «процесс Пенроуза», где описал, что энергия теоретически может быть извлечена из области за пределами эргосферы черной дыры, внутри которой пространство-время искажается под действием вращения этой самой дыры.
Расчеты Пенроуза показали, что если частица разделится внутри эргосферы на две части, одна из которых упадет в горизонт событий, а другая ускользнет от гравитационного притяжения черной дыры, то энергия, выделяемая удаляющейся частицей, может быть извлечена. Но для реализации процесса необходимо, чтобы две новорожденные частицы обладали скоростью, превышающей половину скорости света, вот только такие события настолько редки, что это не позволит получить значительные объемы энергии.
Предложенный механизм был экспериментально подтвержден советским ученым Яковом Зельдовичем, переработавшим теорию «процесса Пенроуза» еще в 1971 году. Он предложил заменить черную дыру вращающимся металлическим цилиндром и направить на нее искривленные лучи света. Если бы цилиндр вращался с нужной скоростью, свет отражался бы обратно с дополнительной энергией, извлекаемой из вращения цилиндра, из-за эффекта Доплера.
В 2020 году ученые из университета Глазго смогли найти способ продемонстрировать эффект, описанный Пенроузом и Зельдовичем. Они заменили лучи света звуковыми волнами, ведь такой эксперимент намного проще провести в лабораторных условиях. Ученые создали систему с кольцом динамиков, которая скручивает звуковые волны, которые затем направляются к вращающемуся звукопоглотителю, сделанному из пены. Микрофоны спрятанные за этим диском, фиксируют сигналы, прошедшие через диск, который медленно увеличивает скорость вращения.
Микрофоны экспериментальной установки
Ученые смогли расслышать изменение частоты и амплитуды звуковых волн, прошедших через диск, что подтверждает теорию Пенроуза и Зельдовича верна. Сначала звук затих и перестал быть слышен, а потом вернулся, и его амплитуда была на 30% больше, чем у изначального звука, вышедшего из динамиков.
Ученые активно ищут и другие механизмы по добыче энергии.
Стивен Хокинг выдвинул гипотезу, что черные дыры могут высвобождать энергию за счет теплового излучения. Для подтверждения необходимы наблюдения, но температуры известных астрономам черных дыр слишком малы, чтобы излучение от них можно было зафиксировать — массы дыр слишком велики.
Еще одним механизмом извлечения энергии из вращающейся черной дыры, основанным на электромагнитном взаимодействии, является процесс Блэнфорда-Знаека.
Другая альтернатива «процесса Пенроуза» принадлежит ученым — Луке Комиссо (Колумбийский университет) и Фелипе Асенхо (Университет Адольфо Ибаньеса). Черные дыры окружены горячей плазмой, частицы которой обладают магнитным полем. Поскольку магнитные соединения и разъединения полей происходят за пределами горизонта событий, частицы плазмы разгоняются до скоростей, приближающихся к скорости света в двух разных направлениях: один поток плазмы может упасть в горизонт событий, а другой «ускользнуть».
Падающая частица будет наделена отрицательной энергией, а выходящая за пределы черной дыры будет иметь положительную энергию, которую можно заставить работать. Теоретически такие частицы могут служить безграничным источником свободной мощности до тех пор, пока черная дыра продолжает поглощать плазму с отрицательной энергией. Отличие от «процесса Пенроуза» заключается в том, что для образования частиц с отрицательной энергией требуется диссипация энергии магнитного поля, а у Пенроуза роль играла только инерция частиц.
Что говорит о черных дырах наука
Многие видели черные дыры в кино и, может, что-то даже о них читали, но мало кто хорошо разбирается в том, как они устроены и работают. Немного расскажем об этом.
Черная дыра — это область пространства-времени, сила гравитации в которой настолько велика, что покинуть ее не могут никакие объекты или волны (в том числе свет, а значит, увидеть саму черную дыру невозможно). Существование черной дыры подтверждает только тот факт, что какое-то количество небесных тел кружится вокруг невидимой зоны. Черная дыра изнутри не пуста, она заполнена огромной массой материи, сжатой в небольшом объеме, что и создает огромную силу притяжения.
Вокруг черной дыры располагается область — горизонт событий, то есть «точка невозврата», после пересечения которой вырваться из гравитационной ловушки уже невозможно. Также вокруг черной дыры располагается еще и аккреционный диск — большая масса притягивает вещество, которое разогревается до огромных температур (миллионы или даже триллионы Кельвинов).
Стрелец А*
Рассчитать характеристики черных дыр при помощи уравнений невозможно, так как там перестают действовать все известные человечеству законы физики. Черные дыры могут быть разных размеров — от маленьких до сверхмассивных. В центре Млечного пути, нашей галактики, расположена сверхмассивная черная дыра — Стрелец А* (SgrA*), массой около 2–5 млн солнечных масс.
Первая фотография черный дыры (галактика Мessier 87)
Фотография черной дыры — это изображение вещества, движущегося вокруг черной дыры. В центре возникает темная область, поскольку там находится черная дыра, из которой не может исходить свет. Разглядеть черноту внутри яркой области удалось всего один раз. Поскольку один телескоп не может запечатлеть такое изображение, для этого потребовалось несколько устройств, разбросанных почти по всей планете. Таким образом получилось сделать единственную на данный момент фотографию черной дыры — огненного «пончика», о котором стало известно в 2019 году.