Эксперимент с двумя щелями и границы макромира

В 1900, последнем году XIX века, Макс Планк открыл кванты света: показал, что энергия света передается в виде минимальных энергетических пакетов. Так зародилась квантовая физика, которая, казалось бы, совершенно случайно попала из XXI века в начало XX-го. На практике квантовая механика оказалась одной из самых точных и строгих систем, известных науке: принципы квантовой механики лежат в основе деления атомного ядра, действия лазера, работы полупроводников. Сегодня уже осуществлены квантовая телепортация и квантовые вычисления. При этом, еще в 1927 году, на пятом Сольвеевском конгрессе, посвященном проблемам квантовой механики, состоялся знаменитый спор между Альбертом Эйнштейном и Нильсом Бором по поводу интерпретируемости квантовой механики. На тот момент победила точка зрения Бора («копенгагенская интерпретация»), указывающая, что следует абстрагироваться от концептуализации событий, происходящих при квантовых взаимодействиях, удовлетворившись математической согласованностью квантовой механики. При этом квантовая система понимается во многом как «черный ящик», но ее уравнения с удивительной точностью подтверждают результаты экспериментов.

Основное отличие квантовой физики (доминирует в микромире) от классической физики (доминирует в макромире) заключается в вероятностном характере квантовых процессов. Так, применительно к электрону в атоме, уравнения квантовой механики дают распределение вероятностей, указывающих, в какой точке орбитали должен быть электрон — и именно там он и оказывается по результатам эксперимента.

Именно с неопределенностью результатов квантового эксперимента вплоть до его окончания связаны и разнообразные квантовые парадоксы, увлекательно описанные в книге Николя Жизана «Квантовая случайность». С неопределенностью того же рода связан знаменитый реальный эксперимент с двумя щелями. Ниже я напомню суть этого эксперимента, после чего расскажу о его новейших постановках. Суть этих повторных экспериментов — наблюдать проявление квантовой вероятности не только в случаях с элементарными частицами, но и с атомами, неорганическими молекулами, крупными органическими молекулами и… так далее. Так нащупывается граница между микромиром и макромиром, то есть, областью доминирования квантовой физики и областью доминирования классической физики.

Эксперимент с двумя щелями

В начале XIX века в научном сообществе, представители которого мыслили в духе детерминизма классической физики, всерьез встал вопрос о том, что представляет собой свет: частицы или волны. Ньютон считал, что свет состоит из мельчайших частиц, «корпускул», что и позволяет объяснить его преломление. С другой стороны, теория Гука-Гюйгенса приводит к выводу, что свет проявляет волновые свойства. Ключевым экспериментом, призванным конкретизировать природу света, стал опыт с двумя щелями, поставленный Томасом Юнгом в 1801 году. Именно Томас Юнг, опираясь на феномен интерференции волн, окончательно сформулировал волновую теорию света, которую проиллюстрировал при помощи своего знаменитого эксперимента:

image-loader.svg

Свет последовательно пропускается через два барьера, в первом из которых прорезана одна щель, а во втором — две. Если бы свет состоял из частиц-корпускул, то на экране, расположенном за вторым барьером, образовывалось бы две освещенные полосы, по одной напротив каждой из щелей. На самом же деле на экране образуется интерференционный узор, свидетельствующий, что свет распространяется по принципу волны. В 1818 году на основании этих данных Французская Академия выступила с вопросом о том, сможет ли кто-нибудь непротиворечиво объяснить природу света. В результате опытов Жака Френеля и Симеона Дени Пуассона на оставшуюся часть XIX века установилось представление о волновой природе света, которое было вновь оспорено только в 1900 году, когда Планк предложил вышеупомянутую концепцию «кванта». Промежуточным итогом, позволившим вписать физические свойства света в квантовую механику, стала теория корпускулярно-волнового дуализма, сформулированная Луи де Бройлем в 1924 году. Согласно этой теории, свет одновременно проявляет свойства волны и потока частиц.

На фоне такого развития событий в 1927 году Клинтон Дэвиссон и Лестер Джермер повторили эксперимент с двумя щелями на электронах, чтобы показать их дифракцию. Длина волны электрона зависит от энергии частицы, и оказалось, что электрон с энергией 100 эВ (электрон-вольт) имеет длину волны 0,1 нм, что весьма сопоставимо с расстоянием между атомами в кристаллической решетке. Поскольку к тому времени уже удалось получить дифракцию рентгеновских лучей в кристаллической решетке, дифракция электронов также дала ожидаемый результат: два пучка электронов, пропускаемых через две щели, оставляли на экране такие следы, которые должны оставаться от двух волн.

Именно тогда в полной мере началась эпоха квантовых парадоксов, на протяжении которой довелось узнать, что на микроуровне мир устроен существенно иначе, нежели на макроуровне, устроен абсурдно и контринтуитивно. Так, был обнаружен квантовый туннельный эффект, при котором квантовая частица с некоторой вероятностью может преодолеть барьер, непроницаемый для классической частицы. Была выявлена зависимость результата опыта от акта измерения, наиболее ярко представленная в виде мысленного эксперимента под названием «кот Шрёдингера» (а также его усложненного варианта под названием «друг Вигнера»):

image-loader.svg

Не вдаваясь в подробное описание этих экспериментов, отмечу: характер течения квантовых экспериментов ключевым образом зависит от присутствия или отсутствия наблюдателя. Так, в вышеупомянутой постановке двухщелевого эксперимента с электронами интерференционная картина сохраняется, только когда за ходом эксперимента никто не смотрит. Если эксперимент пронаблюдать, то происходит коллапс волновой функции частицы, и поток электронов разделяется надвое. Электроны начинают вести себя как корпускулы и оставлять на экране не интерференционный узор, а две полосы напротив двух щелей. Данное явление называется «декогеренцией». По какой-то причине поток частиц теряет квантовую согласованность и перестает вести себя как единая волна.

При этом в 1949 году советским ученым Биберману, Сушкину и Фабриканту удалось продемонстрировать, что дифракционные свойства присущи не только потоку электронов, но и отдельному электрону, проходящему через детектор. Буквально в процессе подготовки этой публикации, 20 августа 2021 года, появилась новость об экспериментальном подтверждении корпускулярно-волнового дуализма у одиночного фотона. Дифракцию одиночного фотона выполнила команда во главе с Тай Хён Юн из Южнокорейского института фундаментальных наук. Таким образом, квантовой механике подчиняются мельчайшие частицы наблюдаемого мира…, а вот каковы самые крупные объекты, которые также ей подчиняются?

Щель расширяется

В начале XXI была поставлена целая череда экспериментов, демонстрирующих, что двухщелевой эксперимент можно проводить не только с элементарными частицами, но и с атомами, молекулами, крупными молекулами, огромными молекулами и, возможно, даже с вирусами.

Подобные эксперименты гораздо сложнее экспериментов над электронами, как с физической, так и с технологической точки зрения. Создать пучок электронов и пропускать их через две щели можно при помощи электронных пушек, расположенных в вакуумированной камере. С молекулами, особенно крупными, приходится учитывать гораздо больше факторов: вес, форму, ориентацию молекул, а также силу химических связей между атомами в них. Для максимального упрощения этих факторов в одном из первых опытов, призванных исследовать квантовые эффекты на примере больших молекул, использовались фуллерены.

У меня в блоге я уже упоминал новейшие исследования, связанные с фуллеренами; напомню, что фуллерены — это крупные неорганические молекулы, состоящие из атомов углерода. Фуллерен C60 напоминает по форме футбольный мяч, а фуллерен C70 — мяч для регби. В описываемом опыте, поставленном в 1999 году, фуллерены доводили до газообразного состояния, нагревая в керамической печи до температуры 900 K, а затем с силой выдувая через щель в ее корпусе. Действительно, в таком опыте фуллерены демонстрируют интерференционный паттерн, характерный для двухщелевого эксперимента:

image-loader.svg

В данном случае фуллерены проходили через детектор со скоростью около 200 м/c.

В 2019 году в Венском университете группа под руководством Армина Шайеги успешно провела двухщелевой опыт с молекулой грамицидина, состоящей из 15 аминокислот. Длина волны в таком эксперименте тем меньше, чем больше размер молекулы, поэтому детектор должен быть особенно чувствительным. Кроме того, приходится иметь дело с хрупкостью органических молекул, о которой я писал выше. Для проведения опыта Шайеги с коллегами покрыли тонким слоем грамицидина край вращающегося угольного колесика. Затем этот край бомбардировали лазерными импульсами длительностью по несколько фемтосекунд каждый, отщепляя таким образом молекулы грамицидина и по возможности не повреждая их. После этого отдельные молекулы грамицидина подхватывались струей аргона, гнавшей их в детектор со скоростью 600 м/с. Действительно, в данном эксперименте грамицидин продемонстрировал длину волны в 350 фемтометров.

image-loader.svg

В сентябре 2019 году там же, в Венском университете, был поставлен еще более амбициозный опыт под руководством Маркуса Арндта. В ходе этого опыта удалось наблюдать волновые квантовые свойства у молекулы размером 2000 атомов, формула которой C707H260F908N16S53Zn4.

image-loader.svg

Эти молекулы направляли в детектор, пропуская их через пятиметровую вакуумную трубку. Чтобы они случайно ни с чем не провзаимодействовали, для движения молекул выделили узкий «коридор», а саму трубку защитили от малейших колебаний при помощи системы пружин и амортизаторов. Такая молекула настолько огромна по сравнению с фуллереном и даже с элементарной частицей, что напрашиваются теории, предполагающие, что граница между микро- и макромиром вообще отсутствует, и макроскопические объекты также могут находиться в квантовой суперпозиции, правда, в течение исчезающе малых промежутков времени. В статье об этом эксперименте упоминается теория непрерывной спонтанной локализации (CSL), в соответствии с которой в уравнение Шрёдингера вводится стохастический нелинейный член, фактически разрушающий макроскопические суперпозиции с течением времени.

Вирус Шрёдингера

Итак, переходим к самому интересному. Квантовые эффекты в живой природе объективно реальны, например, именно на них основан фотосинтез. Но можно ли поместить живое существо в квантовую суперпозицию, то есть, провести его одновременно через две щели или воспроизвести эксперимент с котом Шрёдингера, но с участием вируса?

В 2009 году группа О. Ромеро-Изарта из Инсбрукского университета предложила осуществить оптическую левитацию вируса, так, чтобы вирус парил в вакуумной полости, а затем добиться запутанности вируса с квантовым состоянием микроскопического объекта, например, фотона.

image-loader.svg

Ромеро-Изарт указывает, что подобный опыт возможен в реальности, а не только в качестве мысленного эксперимента, поскольку (1) уже осуществлен оптический захват микроорганизмов в жидкости, (2) некоторые микроорганизмы вполне выживают в вакууме, (3) размер вирусов и некоторых других мельчайших организмов сравним с длиной волны лазера, (4) некоторые микроорганизмы прозрачны и, следовательно, проницаемы для фотонов. По мнению Ромеро-Изарта, для квантовой суперпозиции хорошо подошел бы продолговатый вирус табачной мозаики, поскольку ширина его составляет всего 50 нм, а длина — 1 µm.

Насколько я смог выяснить, на данный момент квантовая суперпозиция вируса еще не получена, но в заключение этой статьи хотелось упомянуть о фантастическом рассказе Грега Бира, который называется «Чума Шрёдингера». Фабула рассказа такова: теоретически смертельно опасный вирус можно поместить в квантовое состояние, в котором он либо заразил, либо не заразил человека. Тогда волновая функция вируса, запутанного с радиоактивным ядром, схлопнется в момент распада этого ядра — и из-за этого единичного квантового события человечество может быть поставлено на грань вымирания. С другой стороны, если квантовая функция действительно схлопывается в результате сознательного наблюдения, то заражение таким вирусом ни в коем случае нельзя диагностировать. Если смертельный квантовый вирус есть у нас в организме, то он подействует на нас, только когда врач узнает результаты анализа, либо как только мы сами ощутим у себя симптомы этого вируса. Таким образом, эксперимент с котом Шрёдингера может быть перенесен сразу на все человечество.

Надеюсь, что этот пример достаточно парадоксален и реалистичен, чтобы мы сначала попытались разобраться, как соотносится квантовая механика и мозг (оригинал на сайте Nautil.us), и только после этого пытались экспериментировать с реальной суперпозицией живых организмов.

© Habrahabr.ru