Домашние эксперименты с радиолампами. Часть 2. Практика

91deb3bf04b5d7635930b6f801af6126.png

В первой части статьи я рассказал о том, что несмотря на достижения полупроводниковой электроники, в ряде приложений до сих пор применяются радиолампы. И мы познакомились с работой диода, триода, тетрода и пентода.

Теперь настало время экспериментов. Будем снимать анодно-сеточную характеристику триода, соберем электромер и простой двухламповый усилитель низкой частоты на стержневых лампах.

В конце статьи вы найдете список полезных ссылок, которые помогут вам поближе познакомиться с радиолампами и их применением.

Приступаем к экспериментам

В рамках этой статьи расскажу о трех экспериментах:

  • снятие анодно-сеточной характеристики триода;

  • создание и испытание лампового электромера;

  • сборка двухлампового усилителя низкой частоты

Анодные и анодно-сеточные характеристики нужны для правильного расчета схем на вакуумных радиолампах.

С помощью электромера вы сможете «пощупать» электроны своими руками. Этот прибор позволит обнаружить статическое электричество, например, от расчески или эбонитовой палочки, потертой о волосы или шерсть.

И, наконец, усилитель низкой частоты позволит вам сделать первый шаг к сборке устройств на радиолампах.

Снимаем анодно-сеточную характеристику триода

Приступим к экспериментам. Для начала займемся снятием характеристик радиоламп.

Чтобы определить возможные рабочие напряжения триода и его коэффициент усиления, используются так называемые анодные и анодно-сеточные характеристики. Вы можете найти их в интернете по названию радиолампы.

В качестве подопытного образца мы возьмем двойной триод 6Н17Б-В в стержневом корпусе.

На сайте RuDataSheet опубликованы характеристики этой лампы, включая анодные и анодно-сеточные характеристики (рис. 13).

Изображение выглядит как текст, диаграмма, линия, рисунок  Автоматически созданное описание

Рис. 13. Анодные и анодно-сеточные характеристики лампы 6Н17Б-В (источник)

Как видите, анодные характеристики показывают зависимость анодного тока от напряжения на аноде для разных значений напряжения на сетке. Анодно-сеточные характеристики показывают анодный ток в зависимости от напряжения на сетке для разных значений напряжения на аноде.

Соберем схему, пригодную для снятия этих характеристик (рис. 14).

Изображение выглядит как диаграмма, зарисовка, Технический чертеж, рисунок  Автоматически созданное описание

Рис. 14. Схема для снятия характеристик триода

Здесь в качестве источника анодного напряжения и напряжения накала (на схеме не показано) мы используем лабораторные источники питания. Анодный ток измеряем мультиметром.

Чтобы подавать регулируемое напряжение на сетку, были использованы две батарейки и реостат из детского конструктора. Сеточное напряжение измеряется вольтметром из того же конструктора (рис. 15).

Изображение выглядит как электроника, Электронная техника, кабель, Электрическая проводка  Автоматически созданное описание

Рис. 15. Схема для снятия анодной и анодно-сеточной характеристики триода

Для статьи мы ограничились снятием только одной анодно-сеточной характеристики при напряжении на аноде, равным 120 В (рис. 16).

Изображение выглядит как текст, линия, График, диаграмма  Автоматически созданное описание

Рис. 16. Анодно-сеточная характеристика для лампы 6Н17Б-В

Как видите, она нелинейна, что вполне соответствует приведенным выше графикам из даташита.

Теперь немного о том, как была подключена лампа 6Н17Б-В.

Мне удалось купить горсть миниатюрных радиоламп и тиратронов на Митинском радиорынке (рис. 17). 

Изображение выглядит как трубка  Автоматически созданное описание

Рис. 17. Миниатюрные радиолампы и тиратроны

Выбрав из этой кучи нужную лампу двойного триода 6Н17Б-В, мы осторожно расправили ее выводы, защитили термоусадочными трубочками и смонтировали на основании из плотного картона (рис. 18).

Изображение выглядит как трубка, текст, в помещении, стол  Автоматически созданное описание

Рис. 18. Монтаж лампы на плотном картоне

Определенная трудность — сопоставить выводы и их нумерацию. Во многих описаниях упоминается черная метка возле первого вывода, однако на лампе 6Н17Б-В такой метки нет. Вам, однако, поможет штампованная прямоугольная метка, расположенная между выводами анодов с номерами 1 и 5 (рис. 19).

Изображение выглядит как диаграмма, круг, рисунок, зарисовка  Автоматически созданное описание

Рис. 19. Разводка лампы 6Н17Б-В

После монтажа лампы на картонное основание мы наклеили возле каждого вывода метку, содержащую номер вывода и его назначение. 

Например, выводы накала обозначены как 4: НК и 8: НК, выводы катода, сетки и анода первого триода как 6: К1, 7: С1 и 1: А1, соответственно. Для второго триода это 2: К2, 3: С2 и 5: А2. Разумеется, вы можете выбрать любое другое обозначение.

Собираем ламповый электроскоп

Давайте соберем на базе лампового триода 6Н17Б-В очень чувствительный электроскоп, способный обнаруживать наэлектризованную об волосы расческу на расстоянии порядка полуметра.

Схема электроскопа очень простая, но для нее нам потребуется микроамперметр с диапазоном изменения тока порядка 50–100 мкА (рис. 20).

Изображение выглядит как диаграмма, зарисовка, Штриховая графика, дизайн  Автоматически созданное описание

Рис. 20. Электроскоп на триоде

Здесь мы подключили источник анодного напряжения через микроамперметр к сетке, а не к аноду. Сравните эту схему с описанной в статье Изобретение электровакуумного диода.

Что же касается анода, то мы подключили к нему провод-антенну небольшой длины (рис. 21).

Изображение выглядит как электроника, кабель, Электрическая проводка, текст  Автоматически созданное описание

Рис. 21. Электроскоп на триоде в сборе

После включения напряжения накала (6,3 В) и анодного напряжения даже небольшой величины микроамперметр покажет значение тока порядка десятков микроампер. Чтобы не повредить микроамперметр, увеличивайте анодное напряжение постепенно от нуля.

Если поднести к сетке-антенне наэлектризованную расческу, можно наблюдать уменьшение тока. Отрицательный заряд, попадающий на анод, отталкивает электроны от сетки, в результате чего анодный ток уменьшается.

УНЧ на стержневых лампах с низковольтным питанием

Обычно если речь идет о ламповых устройствах, то предполагается питание анодных цепей от высокого напряжения, порядка 150–250  В или даже выше. Однако можно сделать вполне работоспособные устройства с анодным питанием от батарей с безопасным напряжением всего 12 В.

Давайте соберем двухламповый усилитель низкой частоты (УНЧ) на стержневых пентодах 1П24Б, которые легко найти в продаже. 

В стержневых радиолампах управление потоком электронов осуществляется не с помощью сеток, а с помощью электростатических линз, изменяющих фокусировку электронного потока. Такие лампы очень надежны к ударам и вибрациям. У них стабильные параметры, они долговечны и устойчивы к радиации. В прошлом эти лампы широко применялись в военной и космической радиоаппаратуре. В частности, лампы 1П24Б использовались в выходном каскаде военных и специальных передатчиков, созданных в СССР.

В макете УНЧ мы будем подавать питание на нить накала с обычной батарейки формата АА, а на анодные цепи — с лабораторного блока питания. Для более серьезных применений можно использовать аккумуляторы или собрать специальный блок питания для конструкций на стержневых лампах.

Принципиальная схема УНЧ на пентодах 1П24Б

На рис. 22 показана принципиальная схема двухкаскадного УНЧ на стержневых пентодах 1П24Б.

Изображение выглядит как диаграмма, зарисовка, рисунок, Технический чертеж  Автоматически созданное описание

Рис. 22. Принципиальная схема УНЧ на двух лампах 1П24Б

Пентоды 1П24Б прямонакальные, поэтому нить накала играет роль катода. Обратите внимание, что напряжение накала подается на соединенные вместе выводы 2 и 4 лампы (катод), а также на вывод 1. 

Согласно техническим характеристикам, при таком включении напряжение накала должно находиться в пределах 1,2 В, а ток накала — 190±20 мА. Вы также можете подавать напряжение накала 2,4 В между выводами 2 и 4, используя вывод 1 в качестве катода. 

Для того чтобы вывести лампы на рабочий линейный режим, используются катодные резисторы R4 и R6 сопротивлением 2,2 кОм. Мы зашунтировали их электролитическими конденсаторами емкостью 10 мкФ и рабочим напряжением 50 В.

На схеме обозначения резисторов R4 и R6 отмечены звездочкой. Это предполагает изменение номинала резисторов в процессе настройки для установки нужного режима работы радиолампы. 

Управляющие сетки ламп соединены с землей через сопротивления 100 кОм. Вторая сетка подключена к анодному питанию, а третья — заземлена.

Анод первой лампы V1 подключен к анодному питанию через резистор 10 кОм, анод второй лампы V2 — к согласующему трансформатору динамика.

На первую сетку первой лампы V1 подается входной сигнал с потенциометра R1. Первая сетка второй лампы V2 подключена к аноду первой лампы через разделительный конденсатор С3 емкостью 0,1–0,5 мкФ. 

В качестве разделительных конденсаторов лучше всего использовать такие, которые выдерживают анодное напряжение и обладают малыми токами утечки. Это конденсаторы с фторопластовой, полистирольной и полипропиленовой изоляцией. Не рекомендуется использовать разделительные керамические конденсаторы, так как в диапазоне звуковых частот они могут вносить нелинейные искажения.

Собираем макет УНЧ

Для стержневых ламп не нужны панельки, поэтому мы собрали УНЧ на обычной макетной плате, не требующей пайки (рис. 23).

Изображение выглядит как электроника, Электрическая проводка, Электронная техника, кабель  Автоматически созданное описание

Рис. 23. Собранный УНЧ на макетной плате

Основная сложность при сборке — идентифицировать выводы стержневых ламп. Первый вывод отмечен черной меткой, далее если повернуть лампу выводами к себе, то нумерация пойдет по часовой стрелке.

Идентификацию лучше всего начинать с выводов нити накаливания. Вывод 1 отмечен меткой, следом за ним идет вывод 2 нити накаливания. Вывод 6 нити накаливания расположен диаметрально противоположно относительно вывода 2 (рис. 24).

Изображение выглядит как текст, рисунок, зарисовка, иллюстрация  Автоматически созданное описание

Обратите также внимание, что выводы 3, 9 и 7 расположены по прямой линии. При этом 9 — это вывод первой сетки, а 7 — вывод третьей сетки. Выводы 4, 5 и 6 могут присутствовать или нет, но в любом случае их не надо никуда подключать.

Чтобы избежать короткого замыкания выводов лампы, на них нужно надеть трубочки, например, из материала с термоусадкой.

На рис. 25 показан полностью собранный макет УНЧ с подключенным накальным и анодным питанием, генератором низкой частоты, осциллографом, выходным трансформатором и динамиком.

Изображение выглядит как электроника, Электронная техника, Электронное устройство, машина  Автоматически созданное описание

Рис. 25. Собранный макет УНЧ

Для запуска УНЧ сначала включите питание накала, а затем подайте анодное напряжение. В качестве входного сигнала УНЧ, помимо генератора FY6900, мы пробовали использовать выход небольшого радиоприемника, предназначенный для наушников.

На выходе генератора FY6900 было установлено выходное напряжение 100 мВ, а частота изменялась в пределах звукового диапазона. 

Перед подключением осциллографа установите делитель в положение 1:10, а также сделайте вход открытым. Это защитит вход осциллографа от слишком большого напряжения на анодах, особенно при напряжении питания в несколько десятков вольт.

Работа этого усилителя была испытана при анодном напряжении в диапазоне 12–60  В. Если вы будете проводить такой эксперимент, можете настроить сопротивление катодных резисторов для достижения максимальной линейности и усиления при выбранном значении анодного напряжения.

Расчет УНЧ на двух лампах

Создавая усилитель звуковой частоты на лампах, вы можете либо повторить какую-либо уже рассчитанную и отлаженную схему, либо сделать собственный расчет. 

В результате расчета нужно определить номиналы анодных и катодных сопротивлений, емкости переходных и шунтирующих конденсаторов, а также параметры выходного трансформатора. Правильный расчет позволяет добиться эффективного и качественного усиления сигнала в заданном диапазоне частот, а также обеспечить долговечность и стабильность работы устройства при изменении напряжения питания и температуры.

Рассмотрим пример расчета УНЧ, схема которого представлена на рис. 22.

Прежде всего, рассчитаем анодное сопротивление R3 и катодное сопротивление R4. Для этого нужно выбрать желаемое анодное напряжение и анодный ток лампы 1П24Б при питающем напряжении 12 В. Выбранная рабочая точка должна обеспечивать линейность и максимально возможное усиление сигнала.

Чтобы выбрать рабочую точку, рассмотрим анодные характеристики 1П24Б (рис. 26), которые нетрудно найти в интернете, например, здесь.

Изображение выглядит как диаграмма, линия, рисунок, зарисовка  Автоматически созданное описание

Рис. 26. Анодные характеристики стержневой лампы 1П24Б (источник)

Вам также пригодятся параметры и анодные характеристики 1П24Б.

В стандартных режимах рабочую точку выбирают по анодным характеристикам исходя из анодного напряжения и напряжения на сетке. Выбор делается таким образом, чтобы попасть на линейный участок характеристики для минимизации искажений.

Для ламп 1П24Б стандартный режим предполагает величину анодного напряжения 150 В, однако у нас есть только 12 В. Поэтому мы будем использовать нестандартный режим и проводить эксперименты.

Детальное описание методики расчетов для стандартных режимов ламп вы найдете, например, в статье Расчет каскада с нагрузкой в аноде.

Если использовать номиналы R3 и R4, показанные на рис. 22, то при напряжении питания 12 В получим следующие значения:

  • напряжение на аноде — 7,25 В;

  • анодный ток — 0,6 мА

Заметим, что максимальный ток анода для лампы 1П24Б составляет 18±6 мА и его не следует превышать, чтобы не сокращать срок службы радиолампы.

Подключим на вход первого каскада генератор FY6900, а к аноду первой лампы — закрытый вход осциллографа Hantek. Проверим, при каких значениях переменного входного напряжения появятся искажения на выходе, и какой при этом получится коэффициент усиления первого каскада.

Если подать на вход первого каскада сигнал амплитудой 0,5 В, на выходе получим 16,8 В без искажений (рис. 27).

Изображение выглядит как текст, снимок экрана, График  Автоматически созданное описание

Рис. 27. Сигнал на выходе первого каскада без искажений

В этом случае коэффициент усиления составил 33,6.

Теперь увеличим входное напряжение до 0,9 В, после чего на выходе первого каскада появятся искажения сигнала (рис. 28).

Изображение выглядит как текст, снимок экрана, График, линия  Автоматически созданное описание

Рис. 28. Искажения сигнала на выходе первого каскада

Если мы используем усилитель, например, для сигнала с выхода радиоприемника или другого устройства, рассчитанного на головные телефоны, то таких характеристик будет вполне достаточно.

Теперь перейдем ко второму каскаду. Здесь в качестве трансформатора вы можете использовать выходной трансформатор от лампового приемника или даже сетевой трансформатор, понижающий напряжение с 220 В до нескольких вольт. Однако для эффективной работы второго каскада нужен расчет выходного трансформатора.

Процедура расчета описана в статье Расчет выходного трансформатора и Подбор выходного трансформатора для двухтактного лампового усилителя.

В нашем случае при анодном напряжении 12 В и токе анода 4 мА второго каскада анодное сопротивление будет равно 3 кОм. Исходя из этих данных, а также сопротивления динамика (мы использовали динамик с сопротивлением 8 Ом) нужно рассчитать необходимый коэффициент трансформации.

Коэффициент трансформации вычисляется как квадратный корень из отношения анодного сопротивления и сопротивления звуковой катушки динамика. В нашем случае получится значение, равное 19. 

Вы можете попробовать использовать те трансформаторы, которые у вас есть, например, после разборки лампового телевизора или радиоприемника.

В статье Моделирующий гитарный усилитель на 1П24Б мощностью 1,5W описано применение трансформатора ТВЗ-1–9. Также вы можете попробовать использовать звуковой трансформатор ИП4.730.015 и ТВК-110-Л-2 из блока кадровой развертки старых ламповых телевизоров. В интернете можно найти рекомендации по перемотке этих трансформаторов для достижения наилучших результатов.

Итоги

В этой статье были описаны эксперименты по снятию анодно-сеточной характеристики триода, электроскоп на базе миниатюрного двойного триода 6Н17Б-В.

Сборка двухкаскадного УНЧ на стержневых пентодах 1П24Б может стать первым шагом в мир ламповой звуковой техники. Несмотря на бурное развитие микроэлектроники, знакомство с лампами может пригодится и сегодня. Возможно, теперь вам захочется сделать свой УНЧ высочайшего класса и с большой выходной мощностью на радиолампах или генератор Тесла. А, может, вас заинтересует любительская радиосвязь, конструирование ламповых приемников или передатчиков.

Надеемся, что эта статья будет для вас первым шагом в увлекательный мир радиоламп!

Полезные ссылки

Автор @AlexandreFrolov

НЛО прилетело и оставило здесь промокод для читателей нашего блога:
-15% на заказ любого VDS (кроме тарифа Прогрев) — HABRFIRSTVDS.

© Habrahabr.ru