2R2L кеширование
Кеширование — широко освещенная и известная тема. Но и в ней могут появляться новые решения. В частности — в области высокоуровневых продуктов (например, в веб-разработке). Столкнувшись с недостатками классического подхода, я попробовал вывести идеальную схему кеширования для случая, когда актуальность данных не является критической. Потом я попробовал найти описание подобной схемы, а лучше — готовые решения. Не нашел. Поэтому назвал ее сам — 2R2L (2 Range 2 Location) — двух-диапазонное двух-«пространственное» кеширование. Хотя наверняка оно уже где-то применяется.
Началось все с простой задачи — отобразить пользователю новинки неких товаров с учетом его индивидуальных предпочтений. И если с получением новинок проблем не было, то соотнесение новинок с предпочтениями (анализ статистики) уже создавал ощутимую нагрузку (для примера определим ее в 4 секунды). Особенность задачи состояла в том, что в качестве пользователей у нас могут выступать целые организации. И нередки случаи, когда одномоментно (в течение 2–3 секунд) на сервер прилетает 200–300 запросов, относящихся к одному пользователю. Т.е. генерируется один и тот же блок сразу для многих пользователей.
Очевидное решение — надо кешировать в RAM (не будем подвергать СУБД насилию, заставляя отрабатывать большой поток обращений). Классическая схема:
- Пришел запрос
- Проверяем кеш. Если данные в нем есть, и они не устарели — просто отдаем их.
- Данных нет => генерируем выдачу
- Отправляем пользователю
- Дополнительно складываем в кеш, указывая TTL
Недостаток такого решения: если данных в кеше нет, генерировать их будут все запросы, пришедшие за время первой генерации, затрачивая на это ресурсы сервера (пики нагрузки). Ну и конечно, все пользователи при «первом обращении» будут ждать.
Также отметим, что при индивидуальных кеш-значениях количество записей может вырасти на столько, что доступной ОЗУ сервера просто не хватит. Тогда логичным выглядит использование локального HDD сервера в качестве хранилища кешей. Но мы сразу теряем в скорости.
Как же быть?
Первое, что приходит в голову: было бы здорово хранить записи в 2 местах — в RAM (часто запрашиваемые) и HDD (все или только редко запрашиваемые). Концепция «горячих и холодных данных» в чистом виде. Реализаций такого подхода — множество, поэтому останавливаться на нем не будем. Просто обозначим эту составляющую как 2L. В моем случае она успешно реализуется на базе СУБД Scylla.
Но как избавиться от «просадок» в моменты, когда кеш устарел? А здесь мы и подключаем концепцию 2R, смысл которой заключается в простой вещи: для кеш-записи надо указывать не 1 значение TTL, а 2. TTL1 — метка времени, которая означает «данные устарели, надо бы перегенерировать, но использовать еще можно»; TTL2 — «все устарело настолько, что использовать уже нельзя».
Таким образом получаем немного иную схему работы кеширования:
- Пришел запрос
- Ищем данные в кеше. Если данные есть и не устарели (t
- Данные есть, устарели, но можно использовать (TTL1 < t < TTL2) – отдаем пользователю И инициализируем процедуру обновления кеш-записи
- Данных нет совсем (убиты по истечении TTL2) — генерируем «как обычно» и записываем в кеш.
- После отдачи контента пользователю или в параллельном потоке выполняем процедуры обновления кеш-записей.
В результате мы имеем:
- если кеш-записи используются достаточно часто, пользователь никогда не попадет в ситуацию «ожидаем актуализации кеша» — он всегда будет получать уже готовый результат.
- если правильно организовать очередь «актуализаций», то можно добиться того, что в случае нескольких одновременных обращений к записи с TTL1 < t < TTL2, в очереди будет находиться только 1 задача на обновление, а не несколько одинаковых.
В качестве примера: для ленты новинок можно указать TTL1 = 1 час (все же не сильно интенсивно новый контент появляется), а TTL2 — 1 неделя.
В простейшем случае код на PHP для реализации 2R может быть таким:
$tmp = cache_get($key);
If (!$tmp){
$items = generate_items();
cache_set($items, 60*60, 60*60*24*7);
}else{
$items = $tmp[‘items’];
If (time()-$tmp[‘tm’] > 60*60){
$need_rebuild[] = [‘to’=>$key, ‘method’=>’generate_items’];
}
}
…
// отдаем данные пользователю
echo json_encode($items);
…
// поскольку данные пользователю уже отправлены, можно и повычислять
If (isset($need_rebuild) && count($need_rebuild)>0){
foreach($need_rebuild as $k=>$v){
$tmp = ['tm'=>time(), 'items'=>$$v[‘method’]];
cache_set($tmp, 60*60, 60*60*24*7);
}
}
На практике, конечно, реализация, скорее всего, будет посложнее. Например, генератор кеш-записей — отдельный скрипт, запущенный в качестве сервиса; очередь — через Rabbit, признак «такой ключ уже есть в очереди на перегенерацию» — через Redis или Scylla.
Итого, если объединить «двух-диапазонный» подход и концепцию «горячие/холодные» данные, как раз и получим — 2R2L.
Спасибо!