[Перевод] Спросите Итана №66: Мы что, нашли тёмную материю?

Ни в коем случае. Найденное нами, пусть и загадка, но уж точно не потерянная масса нашей Вселенной


Время вбирает всё в себя, время уносит прошлое всё дальше, и наконец остается только темнота. Тьма.
— Стивен Кинг


Но у нас пока ещё не конец времени, а конец недели. Время для ответа на следующий вопрос колонки «Спросите Итана», где, выбирая среди очень хороших вопросов, я выбрал вопрос Джо Лэтона, который спрашивает про недавнюю новость:

Я читаю множество заголовков в физических изданиях, типа «Исследователи обнаружили возможный сигнал от тёмной материи». Не могли бы вы, с присущей вам выразительностью, пояснить предысторию вопроса и суть данных новостей?

Давайте же дадим Джо то, что ему нужно!

bbc6482c80ef099ea118ea127b581f08.jpg

Во-первых, существует проблема тёмной материи. Изучая галактический кластер — например, такой, как скопление Волосы Вероники на фото выше, мы можем применить два способа измерения его материи:

  1. Посмотреть на весь спектр электромагнитных сигналов, исходящих от него, включая не только испускающие свет звёзды, но и свет, испускаемый и поглощаемый в других частях спектра. Это даст нам информацию о количестве газа, пыли, плазмы, нейтронных звёзд, чёрных дыр, карликов и даже планет, находящихся внутри.
  2. Проследить движение объектов в кластере — в этом случае, отдельных галактик — и использовать знания законов гравитации для вычисления их общей массы.

Сравнив полученные значения, мы увидим, принадлежит ли вся масса нормальной материи, или же там должно быть что-то ещё, сделанное не из протонов, нейтронов и электронов.
735389be456cf3cd3b4d092cf8d12e91.jpg

То же можно проделать и для отдельных галактик. Достаточно просто посмотреть на все различные компоненты галактики на всех длинах волн. И для галактик, и для кластеров, мы находим определённую массу в виде звёзд, затем примерно в 5–8 раз большую массу в виде нейтрального газа, совсем немного в виде плазмы (хотя в межгалактическим пространстве её полно), и малую толику в виде других типов массы, вместе взятых. В среднем, в дополнение к общей массе всех звёзд, присутствует примерно в восемь раз больше массы других компонентов, состоящих из нормальной материи.

Но, выводя общую массу из гравитации, мы обнаруживаем нечто неожиданное. Чтобы оправдать все наблюдаемые гравитационные эффекты, вроде скоростей вращения галактик на разных расстояниях в отдельных спиралях, и скоростей отдельных галактик относительно центра кластера, нам нужна масса, не в восемь раз превышающую суммарную массу звёзд, а в пятьдесят!

d59dbd79d218aabb6d8b33c0265b3106.jpg

Такая разница, а также тот факт, что нам необходимо примерно в пять раз больше материи по массе, чем сегодня обнаружено нормальной материи во Вселенной, называются проблемой тёмной материи. Огромное количество наблюдений — включая измерения расстояний и красного смещения стандартных астрономических свечей, гигантские по масштабу наблюдения крупных структур во Вселенной, наблюдения столкновений галактических кластеров, и точные измерения микроволнового космического фонового излучения (послесвечения Большого взрыва) — показывает, что проблема заключается не в теории гравитации, а в существовании нового типа материи, которого во Вселенной в пять раз больше, чем обычной, атомной.

И эта новая форма материи — тёмная материя — кроме прочего, не взаимодействует с материей и излучением посредством электромагнитных сил.

d101450a0463acaeb3f3d5ffee5c6558.jpg

Также установлено, что чем бы ни была эта тёмная материя, это не обычные частицы из Стандартной модели. Это не кварки, не бозоны, даже не нейтрино. Что бы это ни было, это должно быть новым типом частиц, который ещё не обнаружили.

На основе гравитационных свойств, которые должны быть у таких частиц, они должны собираться в гигантские гало, как вокруг галактик, так и вокруг кластеров, в гигантских разреженных сфероидах.

eaf10a767c21be5156a1407439e06c9d.jpg
1be44bee8fa38a65c90107257ee4c5fe.gif

В большинстве моделей тёмной материи предполагается, что её частицы должны быть собственными античастицами. Поэтому, там, где плотность тёмной материи максимальна (в центрах галактик и кластеров), существует возможность их аннигиляции. А в этом случае две аннигилирующие частицы испустят два фотона, энергия каждого из которых (для сохранения энергии и импульса) будет соответствовать массе покоя частицы.

3b59cf238483c5f009f87f28a94766bb.jpg
74d028095d9eafcab703568a62661a2a.jpg

Звучит здорово, не так ли? Нам надо всего лишь направить телескопы с детекторами высоких энергий, наши рентгеновские и гамма-обсерватории, в центры галактик и кластеров, и искать сигналы этой аннигиляции. Это означает — искать спектральные линии энергии, не соответствующие известным частицам.

Ерунда ведь, правда?

385b29e3d24493fbf3831b3567bbbf76.jpg

Нет, погодите-ка. Проблема в том, что во Вселенной существует множество разных высокоэнергетических явлений, которые мы здесь на Земле пока не понимаем! Почему? Потому, что мы не можем воссоздать все те странные явления, которые происходят в космосе, и мы не знаем, что является причиной многих (или даже большинства) фонов излучения гамма-лучей и рентгеновских лучей, наблюдаемых нами.

Иначе говоря, существует множество источников рентгеновских и гамма-лучей, известных, но не познанных нами.

Как отмечает Джо, в этом году была открыта новая рентгеновская линия — источник порядка 3,5 кэВ — в ядре галактики Андромеда и ядре кластера Персея.

41110cc001369afac8531934268492da.png

Является ли её причиной что-то обыкновенное, типа ускоряющихся вокруг сверхмассивной чёрной дыры частиц?

Или же причиной этому новая частица — тот же стерильный нейтрино, например — ответственный за тёмную материю, аннигилирующий и в результате демонстрирующий свою массу покоя, эквивалентную (через E = mc2) 3,5 кэВ? (Или в два раза больше, 7 кэВ, если это распадающаяся частица).

1f844b5d7ead07f8c2983c8fa113730b.png

В новостях хотят, чтобы вы поверили, что второй вариант возможен — потому, что было бы круто, если б это оказалось тёмной материей? Но этот сигнал не только пока не является реально подтверждённым (значимость обнаружения составляет 4σ даже для комбинированного набора данных, когда стандартом для открытий является 5σ), он ещё никак не может отвечать за тёмную материю во Вселенной!

Почему? Взгляните на картинку плотных и разреженных областей нашей Вселенной через 380 000 лет после Большого взрыва: космическое микроволновое фоновое излучение.

9b1f6c5c16949a4b3cc82f5fa4fca2e1.jpg

Легко представить, что в то время Вселенная была плотнее и моложе, но легко забыть, что она была ещё и горячее. Это значит не только то, что излучение было горячее, но и то, что материя в ней двигалась с гораздо большими скоростями. И это относится не только к нормальной материи, вроде атомов, но и к тёмной материи.

Почему это важно? Потому, что для того, чтобы сбиваться в комки, и поддерживать структуру из-за гравитационного коллапса, материя должна двигаться достаточно медленно, или коллапс не произойдёт. А если тёмная материя будет слишком лёгкой, структура не сформируется достаточно рано для того, чтобы сойтись с наблюдениями!

9c1476cbca904b8035629dd529374582.png

Что мы можем использовать в качестве ограничения? Наилучшие измерения проистекают из явления под названием «лес Лайман-альфа», которое служит мерой возраста гравитационных колодцев газовых облаков, слабо гравитационно связанных вместе. Конечно, самые плотные объекты превратятся в звёзды, галактики и квазары –, но в процесс будут вмешиваться и облака газа, и они будут поглощать часть света на характерных частотах.

782a7352dcb4f33c060fa0d7a1c6bdf6.jpg

Изучая глубину «лесных линий», особенно в начале, мы можем наложить ограничения на вес тёмной материи. И даже в самых свободных обстоятельствах можно увидеть, что линии поглощения невероятно сильны — соответствуют тому, что тёмная материя очень холодна –, а это значит, что её масса ограничена снизу.

35845e7d714751453b7bf723a93cd557.jpg

И каким же значением? Сейчас она должна быть тяжелее 10 кэВ, судя по силе наблюдаемых линий поглощения. Иначе говоря, в 3 раза тяжелее (или на 50% тяжелее в случае распадающейся частицы), чем этот, якобы, «сигнал тёмной материи»!

Не поймите меня превратно, открытие потенциально новой линии рентгеновского излучения очень интересно, и может открыть нам новую астрофизику, или, потенциально (хотя и маловероятно), новый тип частиц. Но даже если это окажется новая частица, она не будет принадлежать к тёмной материи, поскольку это нарушило бы всю структуру Вселенной (в особенности, на малых масштабах), а наши наблюдения этих структур исключают такой сценарий.

96d9a7edd881bd7b26c35860bdc8b9b4.gif

Так что же — это интересно, но тёмной материей быть не может? Ни в коем случае, только если мы что-то ужасно напутали во многих местах.

Спасибо за прекрасный вопрос, и надеюсь, что объяснение было сделано понятно для вас и для остальных. Присылайте мне ваши вопросы и предложения для следующих статей.

© Geektimes