[Перевод] Почему на космических фотографиях не видно звёзд?
Один из вопросов, постоянно появляющийся в теме реддита «Космос»: «Почему на фото не видно звёзд?» Обычно это фотографии с высадок на Луну миссий «Аполло» или со спутников Земли, но иногда это фотки Юпитера или Луны. В последнее время тут проскакивало много фотографий Falcon Heavy Starman.
Я всё говорил себе о том, что мне надо написать объяснение для непрофессионалов, но у меня вечно не хватало времени. И вот, наконец, меня довели — один комментарий с вопросом, заданным в миллионный раз, наконец, убедил меня сделать это. И теперь, когда кто-то спрашивает об этом, я могу просто дать ему ссылку сюда.
Итак, вот оно. Объяснение того, почему на многих космических фотографиях не видно звёзд, с точки зрения фотографа.
Основы: камеры и экспозиционные числа
В фотокамере свет проходит через линзы и попадает на датчик, или, в стародавние времена — на плёнку. На сенсоре расположены миллионы маленьких фотоэлементов, собирающих частицы света, фотоны. Если всё немного упростить, то каждый из фотоэлементов соответствует пикселю на конечном изображении, а яркость этого пикселя определяется количеством собранных фотонов. На итоговой фотке тёмные области соответствуют тем местам, в которых с сенсором столкнулось меньше фотонов, а светлые — тем, где фотонов было больше. Вы можете представлять себе их, как кучку вёдер, собирающих фотоны — ведро, собравшее больше фотонов, будет иметь более светлый оттенок на итоговом изображении.
Количество света, попадающего на сенсор, измеряется в экспозиционных числах, каждое последующее из которых удваивает или уполовинивает количество света. Интуитивно это можно представить себе в виде выдержки. Оставляя затвор открытым на период вдвое больший, вы соберёте вдвое больше света в каждое ведёрко. На следующем изображении видно, что это означает. Каждый шаг примерно равен одному дополнительному экспозиционному числу. Выдержка указана внизу.
Удваивание времени открытия затвора меняет его с 1/500 до 1/250 секунды. Ещё одно удваивание даёт 1/125 секунды. Это экспонента в квадрате. Экспозиция в 1/125 находится в двух шагах от 1/500, но собирает в четыре раза больше света. Ещё одно удвоение, до экспозиции в 1/60 (это приближённые цифры) означает три шага, но в восемь раз больше света. Получается, что на изображении слева направо выполняется увеличение попадание света, равное четырём экспозиционным ступеням — то есть, правая фотография получила в 24, то есть, в 16 раз больше света, чем левая.
Кроме выдержки, в камере есть ещё два способа изменить количество света, попадающего на фотоматрицу — изменить апертуру линз или ISO. Апертура — размер отверстия, через которое проходит свет.
На числа не обращайте внимания, просто учтите, что чем больше апертура, тем больше через неё проходит света. ISO измеряет чувствительность камеру к свету, и действует примерно так же, как экспозиционные числа — ISO 200 в два раза чувствительнее, чем ISO 100, а ISO 4000 в два раза чувствительнее ISO 200.
Динамический диапазон
На изображении, демонстрирующем разные выдержки, на самой правой фотографии видно, что на ярких участках — небе и облаках — почти невозможно различить детали, они выглядят просто, как белое пятно. Количество яркости, которое способны воспринять сенсоры камеры, ограничено, и самая большая яркость на фото выглядит, как белый цвет. Как только фотоэлемент достигает этого уровня экспозиции, увеличение количества приходящих в него фотонов не даст увеличения яркости. Если представлять себе фотоэлементы в виде ведёрок, то когда ведёрко наполнится, попытка добавить в него дополнительных фотонов не сделает его более полным. Когда яркость сцены выводит фотоэлементы за этот предел, в результате получаются большие белые засветы без всяких деталей — именно это и показано на фото выше.
На этой фотографии работающих на МКС космонавтов можно увидеть засветы. На скафандре и ящике с инструментами у астронавта, повёрнутого к камере спиной, есть большие участки чисто белого цвета, а ещё их можно заметить на самых ярких частях МКС вверху фотографии.
С другой стороны, у фотоэлементов есть и нижний предел распознавания света. Фотоэлементы, не уловившие достаточного количества фотонов, будут представлены на фото чёрными пикселями. Уменьшение количества света до значений ниже этого предела не сделает пиксель темнее, он и так уже максимально тёмный. Нельзя получить более пустое ведро, чем абсолютно пустое.
Участки изображения, оказавшиеся темнее этого предела, будут выглядеть как чёрные пятна без деталей.
На этой фотографии третьей ступени и лунного модуля «Сатурн-5» можно увидеть много теневых участков.
Яркостное расстояние между самым тёмным чёрным и самыми яркими белым называется динамическим диапазоном. Он обозначает диапазон яркости, в котором камера сможет запечатлеть детали изображения. Всё, что ниже этого диапазона, будет на фото чёрным, а всё, что выше — белым.
У современных цифровых камер динамический диапазон измеряется 10–15 экспозиционными ступенями. Можете ознакомиться со списком динамических диапазонов самых качественных цифровых камер. Экспозиционные ступени обозначены в списке, как Evs [exposure value]. У плёнки примерно такой же динамический диапазон.
Поскольку динамический диапазон меняется как степень двойки, разница в интенсивности света между чёрными и белыми пикселями камеры с 15 экспозиционными ступенями будет равна 215, или 32 768. Ещё один способ обозначить этот динамический диапазон — это 32 768:1, что означает, что верхний предел запечатления деталей до засветки в 32 768 раз больше нижнего предела, на котором фотоэлемент не срабатывает.
Фото в дневном свете
Одна важная вещь, которую нужно понять про фотографии луны и планет, включая Землю, состоит в том, что они освещаются дневным светом и демонстрируют дневную сторону объекта. Иначе говоря, объект освещается солнечными лучами.
На этой фотографии Земли показана дневная сторона Земли, повёрнутая к солнцу.
Это фото с места посадки «Аполло-15» — дневное фото. Вы могли решить, что это ночное фото, поскольку небо тёмное, и это Луна, которую видно ночью –, но фото сделано на стороне Луны, обращённой к солнцу, и яркость там такая же, как на Земле днём.
Это дневная фотография Юпитера. Она не ночная. Небо тёмное, и Юпитер можно увидеть в ночном небе, но это фото демонстрирует дневную сторону планеты, повёрнутую к Солнцу. То же самое верно для недавнего запуска SpaceX Tesla — автомобиль был освещён солнцем.
Сравнение дневных фотографий и фотографий звёздного света
Теперь, когда у нас есть все нужные знания, начнём разбираться в том, как сравнивать фотки Земли и Луны в дневном свете с фотками звёзд ночью. Сначала посмотрим, какие настройки были использованы во время миссий «Аполло» и других фотографий астрономических объектов при дневном свете и наземных фотографий. Затем мы посмотрим на настройки, использованные при съёмке звёзд. Наконец, мы введём различные настройки в калькулятор, и увидим, сколько экспозиционных ступеней находится между фотографиями звёзд с правильной экспозицией и фотографиями с «Аполло» и другими дневными фотографиями астрономических объектов.
Если мы обнаружим, что разница в экспозиционных ступенях превышает 15, это будет означать, что камеры, снимающей такие вещи в космосе, как дневная сторона луны, Земля или другие планеты, или такие объекты в дневном свете, как Tesla, не смогут сделать изображения звёзд. Также вспомним, что 15 — максимальная разница между самыми яркими и самыми тёмными оттенками в камере, поэтому функциональное количество экспозиционных ступеней между объектом и самыми тёмными частями будет меньше, поскольку обычно для объекта съёмки выбирается экспозиция со средней яркостью, а не с максимальной. На фото Земли выше планета находится не на верхнем конце шкалы яркости, поэтому расстояние между яркостью Земли и нижним краем динамического диапазона будет равняться не 15 ступеням, а чему-то вроде 7, поскольку Земля находится где-то посередине динамического диапазона фотографии.
Но чтобы упросить расчёты, мы просто будем использовать 15 ступеней в качестве опорной цифры — если правильно выбранная экспозиция для звёзд будет отстоять более, чем на 15 ступеней от правильно выбранной экспозиции для Земли в дневном свете, или Луны, или любой другой планеты, тогда мы сможем быть уверены, что никакие звёзды на этих дневных снимках не появятся.
Ищем реальные настройки экспозиции — звёздный свет
В качестве примеров снимков звёзд я выбрал три изображения из нашего сабреддита. Для каждого из них фотограф указал настройки экспозиции.
Биолюминесценция в Малибу и Млечный путь; выдержка: 13 секунд, апертура: f/1.8, ISO: 4000
Млечный путь перед рассветом над Атлантикой; выдержка: 25 секунд, апертура: f/3.5, ISO: 2500
Млечный путь над яхтой; выдержка: 13 секунд, апертура: f/4.0, ISO: 6400
Ищем реальные настройки экспозиции — дневной свет
В фотографии есть такое практическое правило под названием «Солнечно 16» (правило F/16), утверждающее, что для выбора правильной экспозиции для фотографии в солнечном свете нужно выставить апертуру на f/16, а выдержку на величину, обратную ISO; фотография, сделанная с ISO 100 должна использовать выдержку в 1/100 секунды. Мы возьмём это правило в качестве первого опорного пункта по подходящим настройкам дневных фотографий: ISO 100, f/16 и выдержка 1/100.
Вторым опорным пунктом станут лунные снимки «Аполло». На снимке какого-то фотографического оборудования показаны реальные настройки, использованные для фотографий, сделанных на поверхности луны. Взгляните на катушку плёнки слева. ASA — это плёночный эквивалент ISO, поэтому мы имеем ISO 160. Выдержка выставлена в 1/250 с. Инструкция предписывает снимать с апертурой от f/5.6 до f/11. Поскольку средним значением будет f/8, его мы и используем в качестве эталона. Разница между f/5.6 и f/11 составляет всего две ступени, поэтому это не так уж и важно.
Итоговым эталоном станет этот снимок луны, сделанный астронавтом Паоло Несполи. Настройки камеры перечислены на странице оригинала: ISO 400, f/6.3 и 1/500.
Фото | Выдержка | Апертура | ISO |
---|---|---|---|
Солнечно 16 | 1/100 | f/16 | 100 |
«Аполло» | 1/250 | f/8 | 160 |
Паоло Несполи | 1/500 | f/6.3 | 400 |
Сводим всё вместе
Так сколько же ступеней между дневными снимками и фотографиями звёзд? Есть несколько онлайн-калькуляторов, считающих экспозицию, но я использовал вот этот. Чтобы провести расчёты, мы вводим настройки двух фотографий, и он выдаёт разницу в экспозиции в ступенях. Вот таблица разницы между дневными и звёздными фотографиями. Помните: волшебный номер — 15. Всё, что больше 15, однозначно говорит о слишком большом динамическом диапазоне, и любая попытка получить изображение обоих объектов приведёт либо к засветке, либо к затенению.
Разница между снимками в ступенях | Солнечно 16 | Аполло | Паоло Несполи |
---|---|---|---|
Млечный путь и Малибу | 22 | 20,67 | 19,67 |
Млечный Путь над Атлантикой | 20,33 | 19 | 18 |
Звёзды над яхтой | 20,33 | 19 | 18 |
Вот вам и ответ: разница в яркости между фотографиями дневных объектов, например, поверхности Луны, вида на Землю и другие планеты, и фотографиями звёзд слишком велика, чтобы их можно было запечатлеть на одном изображении. Динамический диапазон в 20 экспозиционных ступеней находится за пределами возможностей наших камер, поэтому на фотографиях освещённых дневным светом объектов в космосе звёзд не видно. Существуют фотографии, где видно тусклые звёзды и объекты, освещённые дневным светом, такие, как Земля или дневная сторона луны. Результат получился очень тёмным. Вот несколько примеров: