[Из песочницы] Как мы учили ИИ распознавать скопления галактик
Недавно, вместе с командой друзей-астрофизиков, я закончила проект, целью которого был поиск далеких, скрытых тканью космоса галактик и их скоплений. Сейчас я поделюсь с вами тем, что мы сделали в результате этой непростой работы.
Анализ данных
Галактики и их скопления — крупномасштабные объекты видимой части Вселенной, поэтому результаты посвященных им исследований представляют ценную информацию для расширения области знания о различных масштабных структурах, позволяют проследить эволюцию масс скоплений и выявить особенности формирования современного вида Вселенной. Подробнее об этом я расскажу в следующих статьях (если вам будет интересно).
Для анализа гигантского объема информации, поступающей с телескопов, хотя бы на наличие галактик требуется автоматический механизм (или больше астрономов). Можно написать программу, выполняющую эту задачу. Но как научить её отличать галактики и их скопления от других объектов космоса?
Нам повезло, в космосе нашлось место для «магии», а конкретно для эффекта Сюняева-Зельдовича, открытом еще в прошлом веке.
Эффект заключается в следующем: изначально фотоны реликтового излучения не энергичны, как ленивец на ветке эвкалипта, но после взаимодействия с электронами, обладающими большим количеством энергии внутри газа, их энергия возрастает за счет температуры горячего газа в скоплении, который разогревается при адиабатическом сжатии либо под действием сил гравитации, либо при столкновении галактик и облаков межгалактического вещества.
Рис. 1. Эффект Сюняева — Зельдовича.
За счет увеличения энергии, фотон увеличивает свою частоту и переходит из миллиметрового диапазона в субмиллиметровый. В этот момент в направлении на скопления галактик фотонов реликтового излучения с заданной температурой в миллиметровом диапазоне не хватает, поэтому в направлении на скопление галактик там наблюдается провал по отношению к среднему фону. А в субмиллиметровом диапазоне, наоборот, избыток фотонов и локальный пик.
Проявляется это так: эффект космического микроволнового фона (т.е. равномерно заполняющего Вселенную теплового излучения, далее CMB), наблюдаемый вдоль линии скопления галактик, выглядит слабее на низких частотах и ярче на высоких.
Таким образом, под влиянием эффекта фон преобразуется в отрицательный сигнал для частот ниже порога (рис. 2, изображение слева) и положительный сигнал для частот выше порога с отсутствием сигнала на нулевой частоте 217 ГГц (рис. 2, изображение справа). Эта особенность эффекта и позволяет астрономам находить кластеры галактик и сверхскопления в микроволновой области спектра.
Чем не магия?
Рис. 2. Влияние эффекта Сюняева-Зельдовича на видимые свойства скоплений галактик
Экспериментальные доказательства существования эффекта были получены совсем недавно, когда на телескопе Planck астрофизики проводили исследования электромагнитного спектра и обратили внимание на то, что на одних частотах наблюдаемая область неба кажется «пустой», а на других на ней вырисовываются целые скопления галактик.
Рис. 3. Это первое сверхскопление, открытое с помощью эффекта Сюняева-Зельдовича. Слева — изображение, полученное «Планком». Правая панель показывает изображение, полученное с помощью обсерватории «XMM-Ньютона».
Это все здорово, но что сделали мы?
Знаете, часто возникают ситуации, когда вы принимаете решение заняться чем-либо просто потому, что вам это нравится, хотя вы предполагаете, что это не понадобится в будущем. Это была такая же ситуация.
Когда текст для основной части работы был написан и оставалось совсем немного времени для оформления результатов, а до дедлайна оставалось чуть меньше недели, я сидела перед монитором и не знала, что делать. Мне иногда даже нравятся такие ситуации, потому что только в них приходится решать задачу на оптимальную стратегию. Я понимала, что распознать большое количество данных (около 10 000 изображений) не смогу физически, а за моими плечами только три пройденных курса, один из которых меня как раз и выручил. Курс посвящен работе с Inception, свёрточной нейросетью компании Google, который я когда-то прошла «для саморазвития» (ссылка в конце статьи).
Для работы с нейронной сетью использовано программное обеспечение Anaconda 2, язык программирования Python 2.7, библиотека Keras для работы с машинным обучением и большими данными и Theano для работы с числовыми данными.
Конечно без советов людей, которые занимаются машинным обучением в течение двух лет, не обошлось. Поэтому через четыре дня у нас была программа для работы с нейросетями глубокого обучения.
Сеть состоит из последовательностей сверточных слоев (CL) и слоев объединения (PL). Сверточные слои позволяют извлекать несколько карт признаков из входных изображений, а слои объединения выполняют заданную подвыборку на картах функций.
Эти последовательности слоев соответствуют этапу выделения признаков. Для классификации изображений выходной уровень является полностью связанным слоем с числом единиц, равным количеству классов. Сеть построена по базовой архитектуре с двумя этапами свертки (особого вида интегрального преобразования) и подвыборки, подключенными к классификатору, что представлено на рисунке.
Рис. 4. Архитектура нейронной сети
Обучение сети происходило без учителя. Каталоги фотографий для обучения сети и дальнейшего распознавания скоплений галактик составлен с помощью GLESP — схемы пикселизации карт космического микроволнового фона, которая создает строгое ортогональное разложение отображения. Для создания каталога обучения нейронной сети использованы данные с миссии телескопа Planck, целью которой был поиск галактик и их скоплений при помощи эффекта Сюняева-Зельдовича. Данные с миссии представлены в виде 6 135 изображений, сделанных на частотах 100, 143, 217, 353 и 545 ГГц.
Одни из результатов работы сети представлены на рисунке 5. И, о чудо, мы нашли интересное скопление.
Рис. 5. Результаты работы сети
Программа была применена к каталогу изображений разных участков неба и в настоящее время анализирует их на наличие галактик и их скоплений.
В перспективе проекта мы будем более подробно изучать принцип влияния эффекта Сюняева-Зельдовича на видимые свойства крупномасштабных объектов Вселенной и создадим универсальный аналитический алгоритм для более подробного изучения космических объектов.
Я очень надеюсь, что это небольшая статья хоть на минутку перенесла вас в чудесный мир космоса. До встречи в следующих статьях!
Полезные ссылки:
- Курс по Inception
- О.В. Верходанов, Н.В. Верходанова, О.С. Улахович и др., Астрофизическая бюллетень, том 73, 1, 2018
- Ostriker, Jeremiah P., Ethan T., Nature, 322 (6082): 804, 1986
- Passmoor S., Cress C., MNRAS, 397 (1), 2009
- Planck Collaboration, Astron. Astrophys.571, A29, 2014