[Из песочницы] Графы дорожных сетей и алгоритмы работы с ними
В математике сети дорог (автомобильных и не только) представляются взвешенным графом. Населенные пункты (или перекрестки) — это вершины графа, ребра — дороги, веса ребер — расстояния по этим дорогам. Для взвешенных графов предлагается множество алгоритмов. Например, популярный алгоритм Дейкстры для поиска кратчайшего пути от одной вершины до другой. У всех этих алгоритмов есть общая принципиальная (для математики) особенность — они универсальны, т.е. могут успешно применяться для графов любой конструкции. В частности, для каждого алгоритма известна его сложность — она примерно соответствует увеличению времени выполнения алгоритма в зависимости от числа вершин графа. Все это подробно можно прочитать, например, в википедии. Вернемся к практическим задачам. Дороги представляются взвешенным графом, но дороги — это не любой граф. Другими словами, нельзя из любого графа построить дорожную сеть. В отличие от виртуального графа как математической абстракции, дороги строятся людьми из реальных материалов и стоят довольно больших денег. Поэтому они прокладываются не как попало, а по определенным экономическим и практическим правилам. Мы не знаем эти правила, однако, работая с дорожными сетями, вполне можно использовать алгоритмы, которые эффективны для графов дорог, хотя и не подходят для графов в универсальном или математическом смысле. Рассмотрим здесь два таких алгоритма.Читать дальше →