В МФТИ создают «локальный» вечный двигатель второго рода

Второй закон термодинамики гласит, что тепловая энергия не может переходить от менее горячих объектов к более горячим, или, в иной формулировке — величина энтропии (степени неупорядоченности) в замкнутой системе либо растёт, либо остаётся постоянной. Согласно ещё одной формулировке закона, КПД тепловой машины никогда не может достигать 100%, иными словами, невозможен вечный двигатель второго рода.

  • Наука

    Новый быстрый радиовсплеск из космоса. Он еще таинственнее предыдущих

  • Наука

    Что скрывается в капле морской воды: потрясающая макросъемка

«Любой тепловой двигатель состоит из нагревателя, который собственно и является источником энергии, и холодильника, задача которого состоит в охлаждении рабочего тела двигателя. Холодильник понижает энтропию двигателя и при этом неизбежно тратит впустую часть тепловой энергии, полученной от нагревателя. Именно поэтому КПД теплового двигателя никогда не достигает 100%», — поясняет ведущий автор исследования Андрей Лебедев, сотрудник Технического университета Цюриха и МФТИ.

Ранее группа под руководством ведущего научного сотрудника Лаборатории квантовой теории информации МФТИ и Института теоретической физики имени Л.Д. Ландау РАН Гордея Лесовика, пытаясь доказать справедливость второго закона термодинамики для квантовых систем, обнаружила, что в квантовом мире он может при определённых условиях нарушаться.

Оказалось, что в квантовых системах относительно небольшого, но макроскопического размера — сантиметры и даже метры (в линейном измерении) — энтропия может снижаться, но этот процесс происходит без передачи тепловой энергии, за счёт явления квантовой запутанности.

В новой статье, опубликованной в журнале Physics Review A, Лебедев, Лесовик и их коллеги из Цюриха описали квантовую тепловую машину, КПД которой может достигать 100%. Она состоит из нескольких квантовых элементов — кубитов, которые могут находиться в состоянии квантовой запутанности друг с другом. Один из кубитов поглощает тепло, но в силу его квантовой природы эту энергию можно использовать только с вероятностью 50%. Чтобы извлекать энергию с вероятностью 100%, нужно снизить его энтропию, сделать это состояние «чистым» (в терминологии квантовой механики). Эту задачу решает вспомогательный чистый кубит, который обменивается своим квантовым состоянием с термализованным «грязным» состоянием рабочего кубита. Важно, что при этом передачи энергии между двумя кубитами не происходит.

На фото (слева направо): Гордей Лесовик и Андрей Лебедев

«Можно сказать, что избыточная энтропия телепортируется из системы наружу во вспомогательный кубит, который играет роль квантового «демона Максвелла», — говорит Лесовик.

После «вычищения» рабочего кубита оказывается, что собрать энергию с вероятностью 100% в одном кубите — это всё ещё непростая задача. Чтобы её решить, пришлось вдвое увеличить число рабочих элементов — кубитов.

«Финальная часть цикла — «демонские» (их, кстати, по смыслу можно назвать скорее «ангельскими» — за их очистительно-информационную деятельность) кубиты нужно почистить обычным образом, с затратой энергии, но это происходит вдали от системы. Важно подчеркнуть, что на этой стадии в объёме, заключающем в себе и систему и «демона/ангела», справедливость второго закона восстанавливается», — говорит Лесовик.

Сейчас группа занимается детальной разработкой установки для экспериментальной проверки своей теории на базе сверхпроводящих кубитов — трансмонов.

©  Популярная Механика