Невероятные аккумуляторы, которых нет: чем нас дразнят ученые

Совсем недавно мы писали про существующие аккумуляторы, а сегодня расскажем о воображаемых — с гигантской удельной ёмкостью и мгновенной зарядкой. Новости о подобных разработках появляются с завидной регулярностью, но будущее пока не наступило, и мы всё ещё пользуемся появившимися в начале позапрошлого десятилетия литий-ионными аккумуляторами, либо их чуть более совершенными литий-полимерными аналогами. Так в чём же дело, в технологических трудностях, неправильной интерпретации слов учёных или чём-то другом? Попробуем разобраться.

В погоне за скоростью зарядки

Один из параметров аккумуляторов, который учёные и крупные компании постоянно стараются улучшить — скорость зарядки. Однако бесконечно увеличивать её не получится даже не в силу химических законов протекающих в аккумуляторах реакций (тем более, что разработчики алюминий-ионных батарей уже заявили, что такой тип аккумуляторов может быть полностью заряжен всего за секунду), а из-за физических ограничений. Пусть у нас есть смартфон с батареей ёмкостью 3000 мАч и поддержкой быстрой зарядки. Полностью зарядить такой гаджет можно в течение часа силой тока в среднем 3 А (в среднем потому, что напряжение при заряде изменяется). Однако если мы хотим получить полный заряд всего за одну минуту, потребуется сила тока уже в 180 А без учёта различных потерь. Для заряда устройства таким током потребуется провод диаметром около 9 мм — в два раза толще самого смартфона. Да и силу тока 180 А при напряжении около 5 В обычное зарядное устройство выдать не сможет: владельцам смартфонов понадобится импульсный преобразователь тока вроде того, что изображён на фотографии ниже.

Невероятные аккумуляторы, которых нет: чем нас дразнят ученые

Альтернатива увеличению силы тока — увеличение напряжения. Но оно, как правило, фиксированное, и для литий-ионный батарей составляет 3,7 В. Конечно, его можно превышать — зарядка по технологии Quick Charge 3.0 идёт с напряжением до 20 В, но попытка зарядить батарею напряжением около 220 В ни к чему хорошему не приведёт, и решить эту проблему в ближайшее время не представляется возможным. Современные элементы питания просто не могут использовать такое напряжение.

Вечные аккумуляторы

Разумеется, речь сейчас пойдёт не о «вечном двигателе», а об аккумуляторах с долгим сроком службы. Современные литий-ионные батареи для смартфонов способны выдержать максимум пару лет активного использования устройств, после чего их ёмкость неуклонно падает. Владельцам смартфонов со съёмными аккумуляторами повезло немного больше, чем другим, но и в этом случае стоит убедиться, что аккумулятор был произведён недавно: литий-ионные батарей деградируют даже тогда, когда не используются.

Невероятные аккумуляторы, которых нет: чем нас дразнят ученые

Своё решение этой проблемы предложили учёные Стэнфордского университета: покрыть электроды существующих типов литий-ионных аккумуляторов полимерным материалом с добавлением наночастиц графита. По задумке учёных, это позволит защитить электроды, которые неизбежно покрываются микротрещинами в процессе эксплуатации, а те же микротрещины в полимерном материале будут затягиваться самостоятельно. Принцип действия такого материала похож на технологию, применённую в смартфоне LG G Flex с самовосстанавливающейся задней крышкой.

Невероятные аккумуляторы, которых нет: чем нас дразнят ученые

К сожалению, дальше научной статьи, опубликованной в 2013 году, дело так и не пошло: нет ни инженерных образцов, ни новых сообщений об этой технологии.

Переход в третье измерение

В 2013 году появилось сообщение о разработке исследователями университета штата Иллинойс нового типа литий-ионных аккумуляторов. Учёные заявили, что удельная мощность таких элементов питания составит до 1000 мВт/(см*мм), в то время как удельная мощность обычных литий-ионных батарей колеблется между 10–100 мВт/(см*мм). Были использованы именно такие единицы измерения, поскольку речь идёт о достаточно небольших структурах толщиной в десятки нанометров.

Невероятные аккумуляторы, которых нет: чем нас дразнят ученые

Вместо плоских анода и катода, применяемых в традиционных Li-Ion батарей, учёные предложили использовать объёмные структуры: кристаллическую решётку из сульфида никеля на пористом никеле в качестве анода и литий-диоксид марганца на пористом никеле в качестве катода.

Невероятные аккумуляторы, которых нет: чем нас дразнят ученые

Несмотря на все сомнения, вызванные отсутствием в первых пресс-релизах точных параметров новых аккумуляторов, а также не представленные до сих пор прототипы, новый тип батарей всё же реален. Подтверждением тому служат несколько научных статей на эту тему, опубликованных за последние два года. Тем не менее, если такие батареи и станут доступны для конечных потребителей, произойдёт это очень нескоро.

Зарядка через экран

Учёные и инженеры пытаются продлить жизнь наших гаджетов не только поиском новых типов аккумуляторов или увеличением их энергоэффективности, но и довольно необычными способами. Исследователи университета штата Мичиган предложили встроить прозрачные солнечные панели прямо в экран. Поскольку принцип работы таких панелей основан на поглощении ими солнечного излучения, чтобы сделать их прозрачными, учёным пришлось пойти на хитрость: материал панелей нового типа поглощает только невидимое излучение (инфракрасное и ультрафиолетовое), после чего фотоны, отражаясь от широких граней стекла, поглощаются узкими полосками солнечных панелей традиционного типа, находящихся по его краям.

Невероятные аккумуляторы, которых нет: чем нас дразнят ученые

Главным препятствием для внедрения такой технологии является низкий КПД таких панелей — всего 1% против 25% традиционных солнечных панелей. Сейчас учёные ищут способы увеличить КПД хотя бы до 5%, но быстрого решения этой проблемы вряд ли стоит ожидать. К слову, похожую технологию недавно запатентовала компания Apple, но пока неизвестно, где именно в своих устройствах производитель расположит солнечные панели.

Мирный атом в каждый смартфон

До этого мы под словами «батарея» и «аккумулятор» мы подразумевали перезаряжаемый элемент питания, но некоторые исследователи считают, что в гаджетах вполне можно использовать одноразовые источники напряжения. В качестве батареек, которые могли бы работать без подзарядки или другого обслуживания несколько лет (а то и несколько десятков лет) учёные университета штата Миссури предложили использовать РИТЭГ — радиоизотопные термоэлектрические генераторы. Принцип действия РИТЭГ основан на преобразовании выделяющегося в процессе радиораспада тепла в электричество. Многим такие установки известны по использованию в космосе и труднодоступных местах на Земле, но в США миниатюрные радиоизотопные батарейки также применялись в кардиостимуляторах.

Невероятные аккумуляторы, которых нет: чем нас дразнят ученые

Работа над улучшенным типом таких батарей ведётся с 2009 года и даже были показаны прототипы таких элементов питания. Но увидеть радиоизотопные батарейки в смартфонах в ближайшей перспективе мы не сможем: они дороги в производстве, и, к тому же, многие страны имеют строгие ограничения на производство и оборот радиоактивных материалов.

В качестве одноразовых батареек также можно использовать и водородные элементы, но их смартфонах использовать не получится. Водородные батареи расходуются довольно быстро: хотя ваш гаджет и будет работать от одного картриджа дольше, чем от одного заряда обычной батареи, их придётся периодически менять. Впрочем, это не мешает использовать водородные батареи в электромобилях и даже внешних аккумуляторах: пока это не массовые устройства, но уже и не прототипы. Да и компания Apple, по слухам, уже разрабатывает систему дозаправки картриджей водородом без их замены для использования в будущих iPhone.

Невероятные аккумуляторы, которых нет: чем нас дразнят ученые

Будущее почти здесь

Идея о том, что на основе графена можно создать аккумулятор с высокой удельной ёмкостью, была выдвинута ещё в 2012 году. И вот, в начале этого года в Испании было объявлено о начале строительства компанией Graphenano завода по производству графен-полимерых аккумуляторов для электромобилей. Новый тип батарей почти в четыре раза дешевле в производстве, чем традиционные литий-полимерные аккумуляторы, имеет удельную ёмкость 600 Втч/кг, а зарядить такую батарею на 50 кВтч можно будет всего за 8 минут. Правда, как мы говорили в самом начале, для этого потребуется мощность около 1 МВт, поэтому подобный показатель достижим лишь в теории. Когда именно завод начнёт выпускать первые графен-полимерные батареи не сообщается, но вполне возможно, что среди покупателей его продукции будет Volkswagen. Концерн уже заявил о планах выпуска электромобилей с пробегом до 700 километров от одного заряда аккумуляторов к 2018 году.

Невероятные аккумуляторы, которых нет: чем нас дразнят ученые

Что касается мобильных устройств, то пока применению в них графен-полимерных аккумуляторов мешают большие габариты таких батарей. Будем надеяться, что исследования в этой области продолжатся, ведь графен-полимерные аккумуляторы — один из наиболее перспективных типов аккумуляторов, которые могут появиться уже в ближайшие годы.

Куда ушёл прогресс?

Так всё же, почему, несмотря на весь оптимизм учёных и регулярно появляющиеся новости о прорывах в области сохранения электроэнергии, мы сейчас наблюдаем застой? В первую очередь, дело в наших завышенных ожиданиях, которые только подогреваются журналистами. Мы хотим верить, что вот-вот и произойдёт революция в мире аккумуляторов, и мы получим батарейку с зарядкой менее, чем за минуту, и практически неограниченным сроком службы, от которой современный смартфон с восьмиядерным процессором будет работать минимум неделю. Но таких прорывов, увы, не бывает. Вводу в массовое производство любой новой технологии предшествуют долгие годы научных исследований, испытаний образцов, разработка новых материалов и технологических процессов и другая работа, занимающая достаточно много времени. В конце концов, тем же литий-ионным аккумуляторам понадобилось около пяти лет, чтобы из инженерных образцов превратиться в готовые устройства, которые можно использовать в телефонах.

Невероятные аккумуляторы, которых нет: чем нас дразнят ученые

Поэтому, нам остаётся только запасаться терпением и не воспринимать новости о новых элементах питания близко к сердцу. По крайней мере, пока не появятся новости об их запуске в массовое производство, когда не останется никаких сомнений о жизнеспособности новой технологии.

Автор текста: Владимир Терехов

Источник:  4pda.ru


©  4PDA