Информационная безопасность банковских безналичных платежей. Часть 8 — Типовые модели угроз

vadn--d2wlmrwvx-iigze_f9c0c.jpeg


О чем исследование

Ссылки на другие части исследования


Данная статья завершает цикл публикаций, посвященных обеспечению информационной безопасности банковских безналичных платежей. Здесь мы рассмотрим типовые модели угроз, на которые ссылались в базовой модели:

ХАБРО-WARNING!!! Уважаемые хабровчане, это не развлекательный пост.
Спрятанные под катом 40+ страниц материалов призваны помочь в работе или учебе людям, специализирующимся на банковском деле или обеспечении информационной безопасности. Данные материалы являются конечным продуктом исследования и написаны в сухом официальном тоне. По сути это заготовки для внутренних документов по ИБ.

Ну и традиционное — «применение сведений из статьи в противоправных целях преследуется по закону». Продуктивного чтения!


Информация для читателей, которые знакомятся с исследованием, начиная с этой публикации.

О чем исследование


Вы читаете гайд для специалиста, ответственного за обеспечение информационной безопасности платежей в банке.

Логика изложения

В начале в части 1 и части 2 дается описание объекта защиты. Затем в части 3 рассказывается, как построить систему защиты, и говорится о необходимости формирования модели угроз. В части 4 рассказывается о том, какие модели угроз бывают и как их формируют. В части 5 и части 6 приводится анализ реальных атак. Часть 7 и часть 8 содержат описание модели угроз, построенной с учетом сведений из всех предыдущих частей.


ТИПОВАЯ МОДЕЛЬ УГРОЗ. СЕТЕВОЕ СОЕДИНЕНИЕ


Объект защиты, для которого применяется модель угроз (scope)


Объектом защиты являются данные, передаваемые через сетевое соединение, функционирующее в сетях передачи данных, построенных на базе стека TCP/IP.

Архитектура

y4ezkf9txootpezrpbqt87rlvpc.png

Описание элементов архитектуры:

  • «Конечные узлы» — узлы, обменивающиеся защищаемой информацией.
  • «Промежуточные узлы» — элементы сети передачи данных: маршрутизаторы, коммутаторы, сервера доступа, proxy-сервера и другое оборудование, — через которые передается трафик сетевого соединения. В общем случае сетевое соединение может функционировать без промежуточных узлов (напрямую между конечными узлами).


Угрозы безопасности верхнего уровня


Декомпозиция

У1. Несанкционированное ознакомление с передаваемыми данными.
У2. Несанкционированная модификация передаваемых данных.
У3. Нарушение авторства передаваемых данных.

У1. Несанкционированное ознакомление с передаваемыми данными


Декомпозиция
У1.1. , осуществляемое на конечных или промежуточных узлах:
У1.1.1. путем считывания данных во время их нахождения в запоминающих устройствах узла:
У1.1.1.1. в оперативной памяти.
Пояснения к У1.1.1.1.
Например, во время обработки данных сетевым стеком узла.

У1.1.1.2. <...> в энергонезависимой памяти.
Пояснения к У1.1.1.2.
Например, при хранении передаваемых данных в кэше, временных файлах или файлах подкачки.

У1.2. <...>, осуществляемое на сторонних узлах сети передачи данных:
У1.2.1. <...> методом захвата всех пакетов, попадающих на сетевой интерфейс узла:
Пояснения к У1.2.1.
Захват всех пакетов осуществляется путем перевода сетевой карты в неразборчивый режим (promiscuous режим для проводных адаптеров или в режим монитора для wi-fi адаптеров).

У1.2.2. <...> путем осуществления атак типа «человек посередине (MiTM)», но без модификации передаваемых данных (не считая служебных данных сетевых протоколов).
У1.2.2.1. Ссылка: «Типовая модель угроз. Сетевое соединение. У2. Несанкционированная модификация передаваемых данных».

У1.3. <...>, осуществляемое за счет утечки информации по техническим каналам (ТКУИ) с физических узлов или линий связи.

У1.4. <...>, осуществляемое за установки на конечные или промежуточные узлы специальных технических средств (СТС), предназначенных для негласного съема информации.

У2. Несанкционированная модификация передаваемых данных


Декомпозиция
У2.1. , осуществляемая на конечных или промежуточных узлах:
У2.1.1. путем считывания и внесения изменения в данные во время их нахождения в запоминающих устройствах узлов:
У2.1.1.1. в оперативной памяти:
У2.1.1.2. в энергонезависимой памяти:

У2.2. <...>, осуществляемая на сторонних узлах сети передачи данных:
У2.2.1. <...> путем осуществлении атак типа «человек посередине (MiTM)» и перенаправления трафика на узел злоумышленников:
У2.2.1.1. Физическое подключение оборудования злоумышленников в разрыв сетевого соединения.
У2.2.1.2. Осуществление атак на сетевые протоколы:
У2.2.1.2.1. <...> управления виртуальными локальными сетями (VLAN):
У2.2.1.2.1.1. VLAN hopping.
У2.2.1.2.1.2. Несанкционированная модификация настроек VLAN на коммутаторах или маршрутизаторах.
У2.2.1.2.2. <...> маршрутизации трафика:
У2.2.1.2.2.1. Несанкционированная модификация таблиц статической маршрутизации роутеров.
У2.2.1.2.2.2. Анонсирование злоумышленниками подложных маршрутов через протоколы динамической маршрутизации.
У2.2.1.2.3. <...> автоматического конфигурирования:
У2.2.1.2.3.1. Rogue DHCP.
У2.2.1.2.3.2. Rogue WPAD.
У2.2.1.2.4. <...> адресации и разрешения имен:
У2.2.1.2.4.1. ARP spoofing.
У2.2.1.2.4.2. DNS spoofing.
У2.2.1.2.4.3. Внесение несанкционированных изменений в локальные файлы имен узлов (hosts, lmhosts и др.)

У3. Нарушение авторства передаваемых данных


Декомпозиция
У3.1. Нейтрализации механизмов определения авторства информации путем указания подложных сведений об авторе или источнике данных:
У3.1.1. Изменение сведений об авторе, содержащихся в передаваемой информации.
У3.1.1.1. Нейтрализация криптографической защиты целостности и авторства передаваемых данных:
У3.1.1.1.1. Ссылка: «Типовая модель угроз. Система криптографической защиты информации.
У4. Создание электронной подписи легитимного подписанта под подложными данными».
У3.1.1.2. Нейтрализация защиты авторства передаваемых данных, реализованной с помощью одноразовых кодов подтверждений:
У3.1.1.2.1. SIM swap.

У3.1.2. Изменение сведений об источнике передаваемой информации:
У3.1.2.1. IP spoofing.
У3.1.2.2. MAC spoofing.


ТИПОВАЯ МОДЕЛЬ УГРОЗ. ИНФОРМАЦИОННАЯ СИСТЕМА, ПОСТРОЕННАЯ НА БАЗЕ АРХИТЕКТУРЫ КЛИЕНТ-СЕРВЕР


Объект защиты, для которого применяется модель угроз (scope)


Объектом защиты является информационная система, построенная на базе архитектуры клиент-сервер.

Архитектура
d6kpdhgnlk8ry4pqvjepyrihqvo.png

Описание элементов архитектуры:

  • «Клиент» — устройство, на котором функционирует клиентская часть информационной системы.
  • «Сервер» — устройство, на котором функционирует серверная часть информационной системы.
  • «Хранилище данных» — часть серверной инфраструктуры информационной системы, предназначенная для хранения данных, обрабатываемых информационной системой.
  • «Сетевое соединение» — канал обмена информацией между Клиентом и Сервером, проходящий через сеть передачи данных. Более подробное описание модели элемента приведено в «Типовой модели угроз. Сетевое соединение».


Ограничения
При моделировании объекта установлены следующие ограничения:

  1. Пользователь взаимодействует с информационной системой в рамках конечных промежутков времени, называемых сеансами работы.
  2. В начале каждого сеанса работы происходит идентификация, аутентификация и авторизация пользователя.
  3. Вся защищаемая информация хранится на серверной части информационной системы.


Угрозы безопасности верхнего уровня


Декомпозиция
У1. Совершение злоумышленниками несанкционированных действий от имени легитимного пользователя.
У2. Несанкционированная модификация защищаемой информации во время ее обработки серверной частью информационной системы.

У1. Совершение злоумышленниками несанкционированных действий от имени легитимного пользователя


Пояснения
Обычно в информационных системах соотнесение действий с выполнившим их пользователем производится с помощью:

  1. журналов работы системы (logs).
  2. специальных атрибутов объектов данных, содержащих сведения об создавшем или изменившем их пользователе.


По отношению к сеансу работы данная угроза может декомпозироваться на:

  1. <...> выполненные в рамках сеанса работы пользователя.
  2. <...> выполненные вне сеанса работы пользователя.


Сеанс работы пользователя может быть инициирован:

  1. Самим пользователем.
  2. Злоумышленниками.


На данном этапе промежуточная декомпозиция данной угрозы будет выглядеть следующим образом:
У1.1. Несанкционированные действия выполнены в рамках сеанса работы пользователя:
У1.1.1. , установленного атакованным пользователем.
У1.1.2. , установленного злоумышленниками.
У1.2. Несанкционированные действия выполнены вне сеанса работы пользователя.

С точки зрения объектов информационной инфраструктуры, на которые могут воздействовать злоумышленники, декомпозиция промежуточных угроз будет выглядеть следующим образом:

Элементы Декомпозиция угроз
У1.1.1. У1.1.2. У1.2.
Клиент У1.1.1.1. У1.1.2.1.
Сетевое соединение У1.1.1.2.
Сервер У1.2.1.


Декомпозиция
У1.1. Несанкционированные действия выполнены в рамках сеанса работы пользователя:
У1.1.1. , установленного атакованным пользователем:
У1.1.1.1. Злоумышленники самостоятельно действовали с Клиента:
У1.1.1.1.1 Злоумышленники использовали штатные средства доступа информационной системы:
У1.1.1.1.1.1. Злоумышленники использовали физические средства ввода-вывода Клиента (клавиатура, мышь, монитор или сенсорный экран мобильного устройства):
У1.1.1.1.1.1.1. Злоумышленники действовали в периоды времени, когда сеанс активен, средства ввода-вывода доступны, а пользователя нет на месте.
У1.1.1.1.1.2. Злоумышленники использовали средства удаленного администрирования (штатные или предоставленные вредоносным кодом) для управления Клиентом:
У1.1.1.1.1.2.1. Злоумышленники действовали в периоды времени, когда сеанс активен, средства ввода-вывода доступны, а пользователя нет на месте.
У1.1.1.1.1.2.2. Злоумышленники использовали средства удаленного администрирования, работа которых незаметна атакованному пользователю.
У1.1.1.2. Злоумышленники подменяли данные в сетевом соединении между Клиентом и Сервером, модифицируя их таким образом, чтобы они воспринимались как действия легитимного пользователя:
У1.1.1.2.1. Ссылка: «Типовая модель угроз. Сетевое соединение. У2. Несанкционированная модификация передаваемых данных».
У1.1.1.3. Злоумышленники принудили пользователя к выполнению указанных ими действий, используя методы социальной инженерии.

У1.1.2 <...> установленного злоумышленниками:
У1.1.2.1. Злоумышленники действовали с Клиента (И):
У1.1.2.1.1. Злоумышленники нейтрализовали систему разграничения доступа информационной системы:
У1.1.2.1.1.1. Ссылка: «Типовая модель угроз. Система разграничения доступа. У1. Несанкционированное установление сеанса работы от имени легального пользователя».
У1.1.2.1.2. Злоумышленники использовали штатные средства доступа информационной системы
У1.1.2.2. Злоумышленники действовали с других узлов сети передачи данных, с которых можно установить сетевое соединение с Сервером (И):
У1.1.2.2.1. Злоумышленники нейтрализовали систему разграничения доступа информационной системы:
У1.1.2.2.1.1. Ссылка: «Типовая модель угроз. Система разграничения доступа. У1. Несанкционированное установление сеанса работы от имени легального пользователя».
У1.1.2.2.2. Злоумышленники использовали нештатные средства доступа информационной системы.
Пояснения У1.1.2.2.2.
Злоумышленники могли установить штатный клиент информационной системы на сторонний узел или могли использовать нештатное ПО, реализующее штатные протоколы обмена между Клиентом и Сервером.

У1.2 Несанкционированные действия выполнены вне сеанса работы пользователя.
У1.2.1 Злоумышленники выполнили несанкционированные действия, а затем внесли несанкционированные изменения в журналы работы информационной системы или специальные атрибуты объектов данных, указав, что совершенные ими действия выполнены легитимным пользователем.

У2. Несанкционированная модификация защищаемой информации во время ее обработки серверной частью информационной системы


Декомпозиция
У2.1. Злоумышленники модифицируют защищаемую информацию с помощью штатных средств информационной системы и проводят это от имени легитимного пользователя.
У2.1.1. Ссылка: «Типовая модель угроз. Информационная система, построенная на базе архитектуры клиент-сервер. У1. Совершение злоумышленниками несанкционированных действий от имени легитимного пользователя».

У2.2. Злоумышленники модифицируют защищаемую информацию путем использования не предусмотренных штатным режимом функционирования информационной системы механизмов доступа к данным.
У2.2.1. Злоумышленники модифицируют файлы, содержащие защищаемую информацию:
У2.2.1.1. <...>, используя механизмы работы с файлами, предоставляемые операционной системой.
У2.2.1.2. <...> путем провокации восстановления файлов из несанкционированно модифицированной резервной копии.

У2.2.2. Злоумышленники модифицируют защищаемую информацию, хранящуюся в базе данных (И):
У2.2.2.1. Злоумышленники нейтрализовывают систему разграничения доступа СУБД:
У2.2.2.1.1. Ссылка: «Типовая модель угроз. Система разграничения доступа. У1. Несанкционированное установление сеанса работы от имени легального пользователя».
У2.2.2.2. Злоумышленники модифицируют информацию, используя штатные интерфейсы СУБД для доступа к данным.

У2.3. Злоумышленники модифицируют защищаемую информацию путем несанкционированной модификации алгоритмов работы обрабатывающего ее ПО.
У2.3.1. Модификации подвергается исходный код ПО.
У2.3.1. Модификации подвергается машинный код ПО.

У2.4. Злоумышленники модифицируют защищаемую информацию путем использования уязвимостей в программном обеспечении информационной системы.

У2.5. Злоумышленники модифицируют защищаемую информацию при ее передаче между компонентами серверной части информационной системы (например, сервером баз данных и сервером приложений):
У2.5.1. Ссылка: «Типовая модель угроз. Сетевое соединение. У2. Несанкционированная модификация передаваемых данных».


ТИПОВАЯ МОДЕЛЬ УГРОЗ. СИСТЕМА РАЗГРАНИЧЕНИЯ ДОСТУПА


Объект защиты, для которого применяется модель угроз (scope)


Объект защиты, для которого применяется данная модель угроз, соответствует объекту защиты модели угроз: «Типовая модель угроз. Информационная система, построенная на базе архитектуры клиент-сервер».

Под системой разграничения доступа пользователей в данной модели угроз подразумевается компонент информационной системы, реализующий функции:

  1. Идентификации пользователей.
  2. Аутентификации пользователей.
  3. Авторизации пользователей.
  4. Протоколирования действий пользователей.


Угрозы безопасности верхнего уровня


Декомпозиция
У1. Несанкционированное установление сеанса работы от имени легального пользователя.
У2. Несанкционированное повышение привилегий пользователя в информационной системе.

У1. Несанкционированное установление сеанса работы от имени легального пользователя


Пояснения
Декомпозиция данной угрозы в общем случае будет зависеть от применяемого типа систем идентификации и аутентификации пользователей.

В данной модели будет рассмотрена только система идентификации и аутентификации пользователей, использующая текстовые логин и пароль. При этом будем считать, что логин пользователя — общедоступная информация, известная злоумышленникам.

Декомпозиция
У1.1. <...> за счет компрометации учетных данных:
У1.1.1. Злоумышленники скомпрометировали учетные данные пользователя в процессе их хранения.
Пояснения У1.1.1.
Например, учетные данные могли быть написаны на стикере, приклеенном к монитору.

У1.1.2. Пользователь случайно или по злому умыслу передал реквизиты доступа злоумышленникам.
У1.1.2.1. Пользователь проговаривал учетные данные вслух при вводе.
У1.1.2.2. Пользователь умышлено передал свои учетные данные:
У1.1.2.2.1. <...> коллегам по работе.
Пояснения У1.1.2.2.1.
Например, для того, чтобы они могли его заменить на период болезни.

У1.1.2.2.2. <...> контрагентам работодателя, выполняющим работы над объектами информационной инфраструктуры.
У1.1.2.2.3. <...> третьим лицам.
Пояснения У1.1.2.2.3.
Одним, но не единственными вариантом реализации данной угрозы является использование злоумышленниками методов социальной инженерии.

У1.1.3. Злоумышленники подобрали учетные данные методом перебора:
У1.1.3.1. <...> с использованием штатных механизмов доступа.
У1.1.3.2. <...> по ранее перехваченным кодам (например, хэшам паролей) хранения учетных данных.

У1.1.4. Злоумышленники использовали вредоносный код для перехвата учетных данных пользователя.

У1.1.5. Злоумышленники извлекли учетные данные из сетевого соединения между Клиентом и Сервером:
У1.1.5.1. Ссылка: «Типовая модель угроз. Сетевое соединение. У1. Несанкционированное ознакомление с передаваемыми данными».

У1.1.6. Злоумышленники извлекли учетные данные с записей систем мониторинга работы:
У1.1.6.1. <...> систем видеонаблюдения (в случае, если во время работы фиксировались нажатия клавиш на клавиатуре).
У1.1.6.2. <...> систем контроля действий сотрудников за компьютером
Пояснения У1.1.6.2.
Пример подобной системы — StuffCop.

У1.1.7. Злоумышленники скомпрометировали учетные данные пользователя из-за недостатков процесса их передачи.
Пояснения У1.1.7.
Например, передача паролей в открытом виде по электронной почте.

У1.1.8. Злоумышленники узнали учетные данные путем наблюдения за сеансом работы пользователя с помощью систем удаленного администрирования.

У1.1.9. Злоумышленники извлекли учетные данные в результате их утечки по техническим каналам (ТКУИ):
У1.1.9.1. Злоумышленники подглядели, как пользователь вводит учетные данные с клавиатуры:
У1.1.9.1.1 Злоумышленники располагались в непосредственной близости к пользователю и видели ввод учетных данных своими глазами.
Пояснения У1.1.9.1.1
К подобным случаям можно отнести действия коллег по работе или случай, когда клавиатуру пользователя видно посетителям организации.

У1.1.9.1.2 Злоумышленники использовали дополнительные технические средства, такие как бинокль или беспилотный летательный аппарат, и увидели ввод учетных данных через окно.
У1.1.9.2. Злоумышленники извлекли учетные данные из записей радиообмена между клавиатурой и системным блоком компьютера в случае подключения их по радиоинтерфейсу (например, Bluetooth).
У1.1.9.3. Злоумышленники осуществили перехват учетных данных за счет их утечки по каналу побочных электромагнитных излучений и наводок (ПЭМИН).
Пояснения У1.1.9.3.
Примеры атаки тут и тут.

У1.1.9.4. Злоумышленник осуществил перехват ввода учетных данных с клавиатуры за счет использования специальных технических средств (СТС), предназначенных для негласного съема информации.
Пояснения У1.1.9.4.
Примеры устройств.

У1.1.9.5. Злоумышленники осуществили перехват ввода учетных данных с клавиатуры за счет
анализа Wi-Fi сигнала, модулированного процессом нажатия клавиш пользователем.
Пояснения У1.1.9.5.
Пример атаки.

У1.1.9.6. Злоумышленники осуществили перехват ввода учетных данных с клавиатуры за счет анализа звуков нажатия на клавиши.
Пояснения У1.1.9.6.
Пример атаки.

У1.1.9.7. Злоумышленники осуществили перехват ввода учетных данных с клавиатуры мобильного устройства за счет анализа показаний акселерометра.
Пояснения У1.1.9.7.
Пример атаки.

У1.1.10. <...>, предварительно сохраненных на Клиенте.
Пояснения У1.1.10.
Например, пользователь мог сохранить в браузере логин и пароль для доступа к определенному сайту.

У1.1.11. Злоумышленники скомпрометировали учетные данные из-за недостатков процесса отзыва доступов пользователей.
Пояснения У1.1.11.
Например, после увольнения пользователя его учетные записи остались не заблокированными.

У1.2. <...> за счет использования уязвимостей в системе разграничения доступа.

У2. Несанкционированное повышение привилегий пользователя в информационной системе


Декомпозиция
У2.1 путем внесения несанкционированных изменений в данные, содержащие сведения о привилегиях пользователя.

У2.2 <...> за счет использования уязвимостей в системе разграничения доступа.

У2.3. <...> из-за недостатков процесса управления доступом пользоватлей.
Пояснения У2.3.
Пример 1. Пользователю для работы был предоставлен доступ больший, нежели ему требовался по служебной необходимости.
Пример 2. После перевода пользователя на другую должность ранее предоставленные права доступа не были отозваны.


ТИПОВАЯ МОДЕЛЬ УГРОЗ. МОДУЛЬ ИНТЕГРАЦИИ


Объект защиты, для которого применяется модель угроз (scope)


Модуль интеграции — набор объектов информационной инфраструктуры, предназначенный для организации обмена информацией между информационными системами.

Учитывая тот факт, что в корпоративных сетях не всегда возможно однозначно отделить одну информационную систему от другой, модуль интеграции можно рассматривать и как связующее звено между компонентами внутри одной информационной системы.

Архитектура
Обобщенная схема модуля интеграции выглядит следующим образом:

tbgo91jzg710pfi1fs68vxizla8.png

Описание элементов архитектуры:

  • «Сервер обмена (СО)» — узел / сервис / компонент информационной системы, выполняющий функцию обмена данными с другой информационной системой.
  • «Посредник» — узел / сервис, предназначенный для организации взаимодействия между информационными системами, но не входящий в их состав.
    Примерами «Посредников» могут быть сервисы электронной почты, сервисные шины предприятия (enterprise service bus / SoA-архитектура), сторонние файловые сервера и т.д. В общем случае модуль интеграции может и не содержать «Посредников».
  • «ПО обработки данных» — совокупность программ, реализующая протоколы обмена данными и преобразование форматов.
    Например, преобразование данных из формата УФЭБС в формат АБС, изменение статусов сообщений в процессе передачи и т.д.
  • «Сетевое соединение» соответствует объекту, описанному в типовой модели угроз «Сетевое соединение». Некоторых сетевых соединений из тех, что представлены на схеме выше, может и не быть.

Примеры модулей интеграции

Схема 1. Интеграция АБС и АРМ КБР через сторонний файловый сервер

Для исполнения платежей уполномоченный работник банка выгружает из АБС электронные платежные документы и сохраняет их в файл (собственного формата, например SQL-дамп) на сетевой папке (\\…\SHARE\) файлового сервера. Затем этот файл с помощью скрипта-конвертера преобразуется в набор файлов формата УФЭБС, которые затем считывает АРМ КБР.
После этого уполномоченный работник — пользователь АРМ КБР — шифрует и подписывает полученные файл и отправляет их в платежную систему Банка России.

При поступлении платежей из Банка России АРМ КБР проводит их расшифровку и проверку электронной подписи, после чего записывает в виде набора файлов формата УФЭБС на файловый сервер. Перед импортом платежных документов в АБС они преобразуются с помощью скрипта-конвертера из формата УФЭБС в формат АБС.

Будем считать, что в данной схеме АБС функционирует на одном физическом сервере, АРМ КБР функционирует на выделенном компьютере, а скрипт-конвертер работает на файловом сервере.

lf1qdousfvyz9dqioqlf3ikksle.png

Соответствие объектов рассмотренной схемы элементам модели модуля интеграции:
«Сервера обмена со стороны АБС» — сервер АБС.
«Сервера обмена со стороны АРМ КБР» — компьютер АРМ КБР.
«Посредник» — сторонний файловый сервер.
«ПО обработки данных» — скрипт-конвертер.

Схема 2. Интеграция АБС и АРМ КБР при размещении общей сетевой папки с платежами на АРМ КБР

Все аналогично Схеме 1, но отдельный файловый сервер не используется, вместо этого сетевая папка (\\…\SHARE\) с электронными платежными документами размещается на компьютере с АРМ КБР. Скрипт-конвертер также работает на АРМ КБР.

xurhoax-fqyokjqb6-ohz9ismpg.png

Соответствие объектов рассмотренной схемы элементам модели модуля интеграции:
Аналогично Схеме 1, но «Посредник» не используется.

Схема 3. Интеграция АБС и АРМ КБР-Н через IBM WebSphera MQ и осуществление подписи электронных документов «на стороне АБС»

АБС работает на платформе, не поддерживаемой СКЗИ СКАД Сигнатура. Подпись исходящих электронных документов проводится на специальном сервере электронной подписи (Сервер ЭП). Этот же сервер проверяет электронную подпись под входящими из Банка России документами.

АБС выгружает на Сервер ЭП файл с платежными документами в собственном формате.
Сервер ЭП с помощью скрипта-конвертера преобразует файл в электронные сообщения формата УФЭБС, после этого электронные сообщения подписываются и передаются на IBM WebSphere MQ.

АРМ КБР-Н обращается к IBM WebSphere MQ и получает оттуда подписанные платежные сообщения, после чего уполномоченный работник — пользователь АРМ КБР — их шифрует и отправляет в платежную систему Банка России.

При поступлении платежей из Банка России АРМ КБР-Н расшифровывает их и проверяет электронную подпись. Успешно обработанные платежи в виде расшифрованных и подписанных электронных сообщений формата УФЭБС передаются в IBM WebSphere MQ, откуда их получает Сервер ЭП.

Сервер ЭП проверяет электронную подпись поступивших платежей и сохраняет их в файл формата АБС. После этого уполномоченный работник — пользователь АБС — загружает получившийся файл в АБС в установленном порядке.

ei-wnzo76sthlfatwpwznbmh76o.png

Соответствие объектов рассмотренной схемы элементам модели модуля интеграции:
«Сервер обмена со стороны АБС» — сервер АБС.
«Сервер обмена со стороны АРМ КБР» — компьютер АРМ КБР.
«Посредник» — Сервер ЭП и IBM WebSphere MQ.
«ПО обработки данных» — скрипт-конвертер, СКЗИ СКАД Сигнатура на Сервере ЭП.

Схема 4. Интеграция Сервера ДБО и АБС через API, предоставляемый выделенным сервером обмена

Будем считать, что в банке используется несколько систем дистанционного банковского обслуживания (ДБО):

  • «Интернет Клиент-Банк» для физических лиц (ИКБ ФЛ);
  • «Интернет Клиент-Банк» для юридических лиц (ИКБ ЮЛ).


В целях обеспечения информационной безопасности все взаимодействие АБС с системами ДБО осуществляется через выделенный сервер обмена, работающий в рамках информационной системы «АБС».

Далее рассмотрим процесс взаимодействия системы ДБО ИКБ ЮЛ с АБС.
Сервер ДБО, получив от клиента должным образом заверенное платежное поручение, должен на его основе создать соответствующий документ в АБС. Для этого он с помощью API передает информацию в сервер обмена, а тот, в свою очередь, вносит данные в АБС.

При изменении остатков на счете клиента АБС формирует электронные уведомления, которые с помощью сервера обмена передаются на сервер ДБО.

diavhw797nokpqpcwsqgdrjxolu.png

Соответствие объектов рассмотренной схемы элементам модели модуля интеграции:
«Сервер обмена со стороны ДБО» — сервер ДБО ИКБ ЮЛ.
«Сервер обмена со стороны АБС» — сервер обмена.
«Посредник» — отсутствует.
«ПО обработки данных» — компоненты Сервера ДБО, ответственные за использование API сервера обмена, компоненты сервера обмена, ответственные за использование API АБС.

Угрозы безопасности верхнего уровня


Декомпозиция
У1. Внедрение злоумышленниками подложной информации через модуль интеграции.

У1. Внедрение злоумышленниками подложной информации через модуль интеграции

Декомпозиция
У1.1. Несанкционированная модификация легитимных данных при их передаче через сетевые соединения:
У1.1.1 Ссылка: «Типовая модель угроз. Сетевое соединение. У2. Несанкционированная модификация передаваемых данных».

У1.2. Передача по каналам связи подложных данных от имени легитимного участника обмена:
У1.1.2 Ссылка: «Типовая модель угроз. Сетевое соединение. У3. Нарушение авторства передаваемых данных».

У1.3. Несанкционированная модификация легитимных данных при их обработке на Серверах обмена или Посреднике:
У1.3.1. Ссылка: «Типовая модель угроз. Информационная система, построенная на базе архитектуры клиент-сервер. У2. Несанкционированная модификации защищаемой информации во время ее обработки серверной частью информационной системы».

У1.4. Создание на Серверах обмена или Посреднике подложных данных от имени легитимного участника обмена:
У1.4.1. Ссылка: «Типовая модель угроз. Информационная система, построенная на базе архитектуры клиент-сервер. У1. Совершение злоумышленниками несанкционированных действий от имени легитимного пользователя».

У1.5. Несанкционированная модификация данных при их обработке с помощью ПО обработки данных:
У1.5.1. <...> за счет внесения злоумышленниками несанкционированных изменений в настройки (конфигурацию) ПО обработки данных.
У1.5.2. <...> за счет внесения злоумышленниками несанкционированных изменений в исполняемые файлы ПО обработки данных.
У1.5.3. <...> за счет интерактивного управления злоумышленниками работой ПО обработки данных.


ТИПОВАЯ МОДЕЛЬ УГРОЗ. СИСТЕМА КРИПТОГРАФИЧЕСКОЙ ЗАЩИТЫ ИНФОРМАЦИИ


Объект защиты, для которого применяется модель угроз (scope)


Объектом защиты является система криптографической защиты информации, используемая для обеспечения безопасности информационной системы.

Архитектура
Основой любой информационной системы является прикладное программное обеспечение (ПО), реализующее ее целевой функционал.

Криптографическая защита при этом обычно реализуется путем вызова из бизнес-логики прикладного ПО криптографических примитивов, которые размещаются в специализированных библиотеках — криптоядрах.

К криптографическим примитивам относятся низкоуровневые криптографические функции, такие как:

  • зашифровать / расшифровать блок данных;
  • создать / проверить электронную подпись блока данных;
  • вычислить хэш-функцию блока данных;
  • сформировать / загрузить / выгрузить ключевую информацию;
  • и т.д.


Бизнес-логика прикладного ПО с помощью криптографических примитивов реализует более высокоуровневый функционал:

  • зашифровать файл на ключах выбранных получателей;
  • установить защищенное сетевое соединение;
  • информировать о результатах проверки электронной подписи;
  • и т. п.


Взаимодействие бизнес-логики и криптоядра может производиться:

  • напрямую, путем вызова бизнес-логикой криптографических примитивов из динамических библиотек криптоядра (.DLL — для Windows, .SO — для Linux);
  • опосредственно, через криптографические интерфейсы — обертки (wrappers), например, MS Crypto API, Java Cryptography Architecture, PKCS#11 и др. В данном случае бизнес-логика обращается к криптоинтерфейсу, а тот транслирует вызов к соответствующему криптоядру, которое в подобном случае называется криптопровайдером. Использование криптографических интерфейсов позволяет прикладному ПО абстрагироваться от конкретных криптографических алгоритмов и быть более гибким.


Можно выделить две типовые схемы организации криптоядра:

Схема 1 — Монолитное криптоядро
zpbrofttlxpmrb9-r2bytn2zf0a.png

Схема 2 — Разделенное криптоядро
jqsrfuuzfkhqbzxujdxuvepifg0.png

Элементы на приведенных схемах могут быть как отдельными модулями ПО, работающими на одном компьютере, так и сетевыми сервисами, взаимодействующими в рамках вычислительной сети.

При использовании систем, построенных по схеме 1, прикладное ПО и криптоядро работают в рамках единой среды функционирования криптосредства (СФК), например, на одном и том же компьютере, под управлением одной и той же операционной системы. Пользователь системы, как правило, может запускать в рамках этой же среды функционирования и другие программы, в том числе содержащие вредоносный код. В подобных условиях существует серьезный риск утечки закрытых криптографических ключей.

Для минимизации риска применяют схему 2, при которой криптоядро разделяется на две части:

  1. © Habrahabr.ru