Град

Град — страшная штука. Как от него защититься? Конечно, противоградовыми ракетами! Надо действовать быстро, время на реакцию после обнаружения цели — буквально несколько минут. Берешь артиллерийскую установку Эльбрус-А, заряжаешь 60-миллиметровыми ракетами Алазань-9 — и вот уже в небо летит полукилограммовый заряд йодистого серебра… и вместо града на землю выпадает обычный безопасный дождь.

(Теперь вы знаете, как правильно начинать светские беседы о погоде и сможете прекратить любую возникшую неловкую паузу.)

Поговорим о граде и борьбе с ним.

Капитан очевидность информирует, что град — это осадки в виде твердых частиц льда размером от миллиметра до нескольких сантиметров, чаще кратковременные, выпадающие в теплое время года в основном в умеренных широтах.

Восходящие потоки теплого воздуха поднимают влагу на значительную высоту, где она охлаждается и собирается в облака. В жаркую погоду потоки воздуха, двигаясь со скоростью более 10 км/ч, могут поднять влагу на высоту более 5 км, где при температуре около -20–25 °С отдельные капли воды замерзают, превращаясь в эмбрион, или зародыш, градины. Если капель воды вокруг немного, а температура очень низкая, то водяной пар из окружающего воздуха медленно скапливается на поверхности градины, образуя непрозрачный белый слой. Это называется сухим ростом. Если температура выше, а капель больше, то происходит влажный рост: поверхность градины подтаивает, а окружающие капли примерзают к ней, быстро формируя прозрачный слой. В итоге градина состоит из чередующихся белесых и прозрачных слоев.

Структура градин

Структура градин

Слои нарастают неравномерно, и градины обычно не являются шарами. Обычно это сплющенные сфероиды, часто с ледяными протуберанцами, образуемыми либо в результате подтаивания сосулек на градине во время влажного, либо нарастание выступов во время сухого роста.

Общее время роста градины от появления зародыша до выпадения в виде осадков составляет 5–15 минут.

Размером градины считается ее наибольшая длина по любой из осей. Примерно в 70% случаев размеры градин не превышают 4 см, 97% — не более 7 см. Всего в 1% случаев выпадают градины размером более 8 см.

Формы градин, описанные в журнале Метеорологическое обозрение в конце XIX века

Формы градин, описанные в журнале Метеорологическое обозрение в конце XIX века

Форма градин, полученные на основе трехмерного лазерного сканирования облаков

Форма градин, полученные на основе трехмерного лазерного сканирования облаков

Градация размеров града такова:
Large — крупный — более 2 см
Very large — очень крупный — более 5 см
Giant — гигантский — более 10 см
Gargantuan — гаргантюэлевский или колоссальный — более 15 см.

Самый крупный град, зафиксированный в России, выпал 9 июня 1984 года в Ивановской области. Его размер превышал 15 см. Расчетный вес таких градин может составлять 350–550 г.

Град может нанести серьезный ущерб человеку и имуществу: повреждаются кровли и автомобили, выбиваются стекла, получают травмы и гибнут люди и животные.

Наиболее крупный град в XXI веке. А — град, выпавший 23 июля 2010 года в районе г. Вивиан, штат Северная Дакота, США, б — град, выпавший 8 февраля 2018 года в районе г. Вилья-Карлос-Пас, провинция Кордоба, Аргентина, в — Град, выпавший 27 октября 2020 года в районе г. Триполи, Ливия

Наиболее крупный град в XXI веке. А — град, выпавший 23 июля 2010 года в районе г. Вивиан, штат Северная Дакота, США, б — град, выпавший 8 февраля 2018 года в районе г. Вилья-Карлос-Пас, провинция Кордоба, Аргентина, в — Град, выпавший 27 октября 2020 года в районе г. Триполи, Ливия

Особенно серьезна проблема града в сельском хозяйстве. Только в Ставропольском крае, являющемся самым градоопасным регионом России, в 2021 году от него пострадали посевы на площади 17,2 тыс. га, что привело к ущербу в размере около 1 млрд рублей.

Количество дней в году с градом больше 2 см (вверху слева) и больше 5 см (вверху справа), а также отдельные события с очень крупным (>5 см) и гигантским (>10 см) градом (внизу).Хорошо видна группировка вокруг Карпат, Альп и Кавказа» /></p>

<p>Количество дней в году с градом больше 2 см (вверху слева) и больше 5 см (вверху справа), а также отдельные события с очень крупным (>5 см) и гигантским (>10 см) градом (внизу).<br />Хорошо видна группировка вокруг Карпат, Альп и Кавказа </p>

<p>Самый простой и достаточно эффективный способ защиты урожая от града — это противоградные сетки с ячейками размером не более 5 мм. Они обычно используются для защиты плодовых деревьев, также защищая от птиц. Ткаие: </p>

<p><img src=

А можно предотвратить появление града, используя противоградовые ракеты. Заряд ракеты состоит из реагента, который распыляется в облаке. Частицы реагента образуют огромное количество искусственных центров кристаллизации, что предотвращает формирование крупных градин. Образующиеся мелкие градины успевают полностью или почти полностью растаять в теплых слоях атмосферы до выпадения на землю.

Работа над созданием первой противоградовой ракеты была начата в 1931 г в Ленинграде физиком Яковом Перельманом и инженером А.Н. Штерном. В конце 50-х годов был испытан первый противоградовый снаряд Эльбрус-2.

В 1961-х годах для защиты виноградников Алазанской долины была разработана противоградовая твердотопливная ракета, стартующая с наклонной пусковой установки, названная соответственно Алазань-1.
Двухрежимный двигатель обеспечивает пологую траекторию ракеты и внесение реагента в заданный облачный слой. При достижении необходимой высоты производится автономный подрыв заряда и распыление реагента в градовом облаке, при этом пластмассовый корпус дробится на мелкие осколки, что обеспечивает безопасность применения ракеты в густонаселенных районах. Масса льдообразующего реагента составляет около 0,6 кг с содержанием около 12 г йодистого серебра.

Алазань запускается с различных пусковых установок, таких как Элия, ККБ-040 и Эльбрус.
Пусковая установка ТКБ-040 обеспечивает запуск 12 ракет Алазань в течение 1 минуты. При запуске нескольких ракет по различным азимутам достигается площадной засев выбранной части облака, а при установке различных вертикальных углов — и объемный засев, что существенно повышает эффективность воздействия.

На переднем плане – автоматизированная ракетная установка Элия На втором – ракетная установка с ручным приводом ТКБ-040–К.

На переднем плане — автоматизированная ракетная установка Элия На втором — ракетная установка с ручным приводом ТКБ-040–К.

Алазань несколько раз модифицировалась, и в 2022 году была представлена новая версия Алазань-9, которая, несмотря на меньший калибр (60 мм вместо 82) обладает той же эффективностью за счет повышения быстродействия реагента в 2,5–3 раза. Для запуска ракеты модифицированная артиллерийская установка Эльбрус-А оснащена цифровой системой управления, что повышает скорость и точность запуска.

В 1964 году был разработана ракета Облако, несущая 5-килограммовый заряд с йодистым оловом в качестве реагента. После распыления реагента стеклопластиковый корпус ракеты возвращается на землю на парашюте, что более экологично, чем падение обломков пластикового корпуса Алазани. В 70–80х годах ракета была модифицирована и получила название Облако-М.

Еще одна противоградовая ракета — Алан-2, разработанная в 1994 году, запускается с установки Алан М3 залпами до 36 ракет, несет 3 кг реагента на основе йодистого серебра и возвращается на парашюте, как Облако.

Последняя российская разработка 2014 г — малогабаритный противоградовый комплекс Ас-Элия в составе ракеты Ас, несущей 0,83 кг реагента, и 36-ствольной автоматизированной ракетной установки Элия-2 с дистанционным беспроводным управлением.

Мортира для запуска ГЛА-105

Мортира для запуска ГЛА-105

Кроме того, существуют наземные комплексы фейерверочного типа, состоящие из генераторов льдообразующего аэрозоля ГЛА-105, ГЛА 125 одноствольных и многоствольных мортир для их отстрела. В этом случае реагент выбрасывается на высоту 200 — 500 м и поднимается в облако потоками теплого воздуха.

Для обнаружения градоопасных облаков используются метеорологические радиолокаторы МРЛ-5 и ДМРЛ-10 с системой управления противоградовыми операциями типа АСУ-МРЛ. МРЛ-5 позволяет обнаруживать и определять очаги гроз, града и ливневых осадков в радиусе 300 км, а также определять протяженность метеообразований, направление и скорость их движения, верхних и нижних границ облаков любых форм. Эта информация помогает своевременно обнаружить и локализовать градовые очаги в облаках и предотвратить потенциальный ущерб.

Передвижной метеорологический радиолокатор МРЛ-5А

Передвижной метеорологический радиолокатор МРЛ-5А 

Автор: Карина Соловьёва

Оригинал

© Habrahabr.ru