Достижения в глубоком обучении за последний год

3750d89c365c4fd58780fa4a9f9c97cf.jpg


Привет, Хабр. В своей статье я расскажу вам, что интересного произошло в мире машинного обучения за последний год (в основном в Deep Learning). А произошло очень многое, поэтому я остановился на самых, на мой взгляд, зрелищных и/или значимых достижениях. Технические аспекты улучшения архитектур сетей в статье не приводятся. Расширяем кругозор!


1. Текст


1.1. Google Neural Machine Translation


Почти год назад Google анонсировала запуск новой модели для Google Translate. Компания подробно описала архитектуру сети — Recurrent Neural Network (RNN) — в своей статье.


5d3d48157b02496a9e66078834ea5142.gif


Основной результат: сокращение отставания от человека по точности перевода на 55—85% (оценивали люди по 6-балльной шкале). Воспроизвести высокие результаты этой модели сложно без огромного датасета, который имеется у Google.


image


2.1. Переговоры. Будет сделка?


Вы могли слышать дурацкие новости о том, что Facebook выключила своего чат-бота, который вышел из-под контроля и выдумал свой язык. Этого чат-бота компания создала для переговоров. Его цель — вести текстовые переговоры с другим агентом и достичь сделки: как разделить на двоих предметы (книги, шляпы…). У каждого агента своя цель в переговорах, другой ее не знает. Просто уйти с переговоров без сделки нельзя.


Для обучения собрали датасет человеческих переговоров, обучили supervised рекуррентную сеть, далее уже обученного агента с помощью reinforcement learning (обучения с подкреплением) тренировали переговариваться с самим собой, поставив ограничение: похожесть языка на человеческий.


Бот научился одной из стратегий реальных переговоров — показывать поддельный интерес к некоторым аспектам сделки, чтобы потом по ним уступить, получив выгоду по своим настоящим целям. Это первая попытка создания подобного переговорного бота, и довольно удачная.


image


Подробности — в статье, код выложен в открытый доступ.


Разумеется, новость о том, что бот якобы придумал язык, раздули на пустом месте. При обучении (при переговорах с таким же агентом) отключили ограничение похожести текста на человеческий, и алгоритм модифицировал язык взаимодействия. Ничего необычного.



За последний год рекуррентные сети активно развивали и использовали во многих задачах и приложениях. Архитектуры рекуррентных сетей сильно усложнились, однако по некоторым направлениям похожих результатов достигают и простые feedforward-сети — DSSM. Например, Google для своей почтовой фичи Smart Reply достигла такого же качества, как и с LSTM до этого. А Яндекс запустил новый поисковый движок на основе таких сетей.


2. Речь


2.1. WaveNet: генерирующая модель для необработанного аудио


Сотрудники DeepMind (компания, известная своим ботом для игры в го, ныне принадлежащая Google) рассказали в своей статье про генерирование аудио.


Если коротко, то исследователи сделали авторегрессионную полносверточную модель WaveNet на основе предыдущих подходов к генерированию изображений (PixelRNN и PixelCNN).


6fc5c9839a7041ae9a62a43c8a0b7a23.gif


Сеть обучалась end-to-end: на вход текст, на выход аудио. Результат превосходный, разница с человеком сократилась на 50%.


image


Основной недостаток сети — низкая производительность, потому что из-за авторегрессии звуки генерируются последовательно, на создание одной секунды аудио уходит около 1—2 минут.


Английский: пример


Если убрать зависимость сети от входного текста и оставить только зависимость от предыдущей сгенерированной фонемы, то сеть будет генерировать подобные человеческому языку фонемы, но бессмысленные.


Генерирование голоса: пример


Эту же модель можно применить не только к речи, но и, например, к созданию музыки. Пример аудио, сгенерированного моделью, которую обучили на датасете игры на пианино (опять же без всякой зависимости от входных данных).


Пример пианино


Подробности — в статье.


2.2. Чтение по губам


Еще одна победа машинного обучения над человеком ;) На этот раз — в чтении по губам.


Google Deepmind в сотрудничестве с Оксфордским университетом рассказывают в статье «Lip Reading Sentences in the Wild», как их модель, обученная на телевизионном датасете, смогла превзойти профессионального lips reader«а c канала BBC.


image


В датасете 100 тыс. предложений с аудио и видео. Модель: LSTM на аудио, CNN + LSTM на видео, эти два state-вектора подаются в итоговую LSTM, которая генерирует результат (characters).


image


При обучении использовались разные варианты входных данных: аудио, видео, аудио + видео, то есть модель «омниканальна».


image


2.3. Синтезируя Обаму: синхронизация движения губ с аудио


image


Университет Вашингтона проделал серьезную работу по генерированию движения губ бывшего президента США Обамы. Выбор пал на него в том числе из-за огромного количества записей его выступления в сети (17 часов HD-видео).


Одной сетью обойтись не удалось, получалось слишком много артефактов. Поэтому авторы статьи сделали несколько костылей (или трюков, если угодно) по улучшению текстуры и таймингам.


image


Результат впечатляет. Скоро нельзя будет верить даже видео с президентом ;)


3. Компьютерное зрение


3.1. OCR: Google Maps и Street View


В своих посте и статье команда Google Brain рассказывает, как внедрила в свои Карты новый движок OCR (Optical Character Recognition), с помощью которого распознаются указатели улиц и вывески магазинов.


image


image


В процессе разработки технологии компания составила новый FSNS (French Street Name Signs), который содержит множество сложных кейсов.


Сеть использует для распознавания каждого знака до четырех его фотографий. С помощью CNN извлекаются фичи, взвешиваются с помощью spatial attention (учитываются пиксельные координаты), а результат подается в LSTM.


image


Тот же самый подход авторы применяют к задаче распознавания названий магазинов на вывесках (там может быть много «шумовых» данных, и сеть сама должна «фокусироваться» в нужных местах). Алгоритм применили к 80 млрд фотографий.


3.2. Visual Reasoning


Существует такой тип задач, как Visual Reasoning, то есть нейросеть должна по фотографии ответить на какой-то вопрос. Например: «Есть ли на картинке резиновые вещи того же размера, что и желтый металлический цилиндр?» Вопрос и правда нетривиальный, и до недавнего времени задача решалась с точностью всего лишь 68,5%.


image


И вновь прорыва добилась команда из Deepmind: на датасете CLEVR они достигли super-human точности в 95,5%.


Архитектура сети весьма интересная:


  1. По текстовому вопросу с помощью pretrained LSTM получаем embedding (представление) вопроса.
  2. По картинке с помощью CNN (всего четыре слоя) получаем feature maps (фичи, характеризующие картинку).
  3. Далее формируем попарные комбинации покоординатных slice«ов feature maps (желтые, синие, красные на картинке ниже), добавляем к каждой координаты и текстовый embedding.
  4. Прогоняем все эти тройки через еще одну сеть, суммируем.
  5. Полученное представление прогоняем через еще одну feedforward-сеть, которая уже на софтмаксе выдает ответ.


    image



3.3. Pix2Code


Интересное применение нейросетям придумала компания Uizard: по скриншоту от дизайнера интерфейсов генерировать код верстки.


image


Крайне полезное применение нейросетей, которое может облегчить жизнь при разработке софта. Авторы утверждают, что получили 77% точности. Понятно, что это пока исследовательская работа и о боевом применении речи не идет.


Кода и датасета в open source пока нет, но обещают выложить.



3.4. SketchRNN: учим машину рисовать


Возможно, вы видели страничку Quick, Draw! от Google с призывом нарисовать скетчи различных объектов за 20 секунд. Корпорация собирала этот датасет для того, чтобы обучить нейросеть рисовать, о чем Google рассказала в своем блоге и статье.


image


Собранный датасет состоит из 70 тыс. скетчей, он был в итоге выложен в открытый доступ. Скетчи представляют собой не картинки, а детализированные векторные представления рисунков (в какой точке пользователь нажал «карандаш», отпустил, куда провел линию и так далее).


Исследователи обучили Sequence-to-Sequence Variational Autoencoder (VAE) c использованием RNN в качестве механизма кодирования/декодирования.


image


В итоге, как и положено автоенкодеру, модель получает латентный вектор, который характеризует исходную картинку.


image


Поскольку декодер умеет извлекать из этого вектора рисунок, то можно его менять и получать новые скетчи.


image


И даже выполнять векторную арифметику, чтобы соорудить котосвина:


image


3.5. GAN


Одна из самых горячих тем в Deep Learning — Generative Adversarial Networks (GAN). Чаще всего эту идею используют для работы с изображениями, поэтому объясню концепцию именно на них.


Суть идеи состоит в соревновании двух сетей — Генератора и Дискриминатора. Первая сеть создает картинку, а вторая пытается понять, реальная это картинка или сгенерированная.


Схематично это выглядит так:


image


Во время обучения генератор из случайного вектора (шума) генерирует изображение и подает на вход дискриминатору, который говорит, фальшивка это или нет. Дискриминатору также подаются реальные изображения из датасета.


Обучать такую конструкцию часто тяжело из-за того, что трудно найти точку равновесия двух сетей, чаще всего дискриминатор побеждает и обучение стагнирует. Однако преимущество системы в том, что мы можем решать задачи, в которых нам тяжело задать loss-функцию (например, улучшение качества фотографии), мы это отдаем на откуп дискриминатору.


Классический пример результата обучения GAN — картинки спален или лиц.


image


image


Ранее мы рассматривали автокодировщики (Sketch-RNN), которые кодируют исходные данные в латентное представление. С генератором получается то же самое.


Очень наглядно идея генерирования изображения по вектору на примере лиц показана тут (можно изменять вектор и посмотреть, какие выходят лица).


image


Работает все та же арифметика над латентным пространством: «мужчина в очках» минус «мужчина» плюс «женщина» равно «женщина в очках».


image


3.6. Изменение возраста лица с помощью GAN


Если при обучении подсунуть в латентный вектор контролируемый параметр, то при генерировании его можно менять и так управлять нужным образом на картинке. Этот подход именуется Conditional GAN.


Так поступили авторы статьи «Face Aging With Conditional Generative Adversarial Networks». Обучив машину на датасете IMDB с известным возрастом актеров, исследователи получили возможность менять возраст лица.


image


3.7. Фотографии профессионального уровня


В Google нашли еще одно интересное применение GAN — выбор и улучшение фотографий. GAN обучали на датасете профессиональных фотографий: генератор пытается улучшить плохие фотографии (профессионально снятые и ухудшенные с помощью специальных фильтров), а дискриминатор — различить «улучшенные» фотографии и реальные профессиональные.


Обученный алгоритм прошелся по панорамам Google Street View в поиске лучших композиций и получил некоторые снимки профессионального и полупрофессионального качества (по оценкам фотографов).


image


image


3.8. Синтезирование из текстового описания в изображение


Впечатляющий пример использования GAN — генерирование картинок по тексту.


image


Авторы статьи предлагают подавать embedding текста на вход не только генератору (conditional GAN), но и дискриминатору, чтобы он проверял соответствие текста картинке. Чтобы дискриминатор научился выполнять свою функцию, дополнительно в обучение добавляли пары с неверным текстом для реальных картинок.


image


3.9. Pix2pix


Одна из ярких статей конца 2016 года — «Image-to-Image Translation with Conditional Adversarial Networks» Berkeley AI Research (BAIR). Исследователи решали проблему image-to-image генерирования, когда, например, требуется по снимку со спутника создать карту или по наброску предметов — их реалистичную текстуру.


image


Это еще один пример успешной работы conditional GAN, в данном случае condition идет на целую картинку. В качестве архитектуры генератора использовалась UNet, популярная в сегментации изображений, а для борьбы с размытыми изображениями в качестве дискриминатора взяли новый классификатор PatchGAN (картинка нарезается на N патчей, и предсказание fake/real идет по каждому из них в отдельности).


Авторы выпустили онлайн-демо своих сетей, что вызвало огромный интерес у пользователей.


image


Исходный код.


3.10. CycleGAN


Чтобы применить Pix2Pix, требуется датасет с соответствующими парами картинок из разных доменов. В случае, например, с картами собрать такой датасет не проблема. Но если хочется сделать что-то более сложное вроде «трансфигурирования» объектов или стилизации, то пар объектов не найти в принципе. Поэтому авторы Pix2Pix решили развить свою идею и придумали CycleGAN для трансфера между разными доменами изображений без конкретных пар — Unpaired Image-to-Image Translation.


image


Идея состоит в следующем: мы учим две пары генератор-дискриминатор из одного домена в другой и обратно, при этом мы требуем cycle consistency — после последовательного применения генераторов должно получиться изображение, похожее на исходное по L1 loss«у. Цикличный loss требуется для того, чтобы генератор не начал просто транслировать картинки одного домена в совершенно не связанные с исходным изображением.


image


Такой подход позволяет выучить маппинг лошади –> зебры.


69341a3967d44ab2bbcfeb288fdeac49.gif


Такие трансформации работают нестабильно и часто создают неудачные варианты:


image


Исходный код.


3.11. Разработка молекул в онкологии


Машинное обучение сейчас приходит и в медицину. Помимо распознавания УЗИ, МРТ и диагностики его можно использовать для поиска новых лекарств для борьбы с раком.


Мы уже подробно писали об этом исследовании тут, поэтому коротко: с помощью Adversarial Auto Encoder (AAE) можно выучить латентное представление молекул и дальше с его помощью искать новые. В результате нашли 69 молекул, половина из которых применяются для борьбы с раком, остальные имеют серьезный потенциал.


image


3.12. Adversarial-атаки


Сейчас активно исследуется тема с adversarial-атаками. Что это такое? Стандартные сети, обучаемые, например, на ImageNet, совершенно неустойчивы к добавлению специального шума к классифицируемой картинке. На примере ниже мы видим, что картинка с шумом для человеческого глаза практически не меняется, однако модель сходит с ума и предсказывает совершенно иной класс.


image


Устойчивость достигается с помощью, например, Fast Gradient Sign Method (FGSM): имея доступ к параметрам модели, можно сделать один или несколько градиентных шагов в сторону нужного класса и изменить исходную картинку.


Одна из задач на Kaggle к грядущему NIPS как раз связана с этим: участникам предлагается создать универсальные атаки/защиты, которые в итоге запускаются все против всех для определения лучших.


Зачем нам вообще исследовать эти атаки? Во-первых, если мы хотим защитить свои продукты, то можно добавлять к капче шум, чтобы мешать спамерам распознавать ее автоматом. Во-вторых, алгоритмы все больше и больше участвуют в нашей жизни — системы распознавания лиц, беспилотные автомобили. При этом злоумышленники могут использовать недостатки алгоритмов. Вот пример, когда специальные очки позволяют обмануть систему распознавания лиц и «представиться» другим человеком. Так что модели надо будет учить с учетом возможных атак.


image


Такие манипуляции со знаками тоже не позволяют правильно их распознать.


image


Набор статей от организаторов конкурса.


Уже написанные библиотеки для атак: cleverhans и foolbox.


4. Обучение с подкреплением


Reinforcement learning (RL), или обучение с подкреплением, — также сейчас одна из интереснейших и активно развивающихся тем в машинном обучении.


Суть подхода заключается в выучивании успешного поведения агента в среде, которая при взаимодействии дает обратную связь (reward). В общем, через опыт — так же, как учатся люди в течение жизни.


image


RL активно применяют в играх, роботах, управлении системами (трафиком, например).


Разумеется, все слышали о победах AlphaGo от DeepMind в игре го над лучшими профессионалами. Статья авторов была опубликована в Nature «Mastering the game of Go». При обучении разработчики использовали RL: бот играл сам с собой для совершенствования своих стратегий.


4.1. Обучение с подкреплением с неконтролируемыми вспомогательными задачами


В предыдущие годы DeepMind научился с помощью DQN играть в аркадные игры лучше человека. Сейчас алгоритмы учат играть в более сложные игры типа Doom.


Много внимания уделено ускорению обучения, потому что наработка опыта агента во взаимодействии со средой требует многих часов обучения на современных GPU.


Deepmind в своем блоге рассказывает о том, что введение дополнительных loss«ов (auxiliary tasks, вспомогательных задач), таких как предсказание изменения кадра (pixel control), чтобы агент лучше понимал последствия действий, существенно ускоряет обучение.


8d60b2d875ab4206a47bc2f1e19eb53e.gif


Результаты обучения:



4.2. Обучающиеся роботы


В OpenAI активно исследуют обучение человеком агента в виртуальной среде, что более безопасно для экспериментов, чем в реальной жизни ;)


В одном из исследований команда показала, что one-shot learning возможно: человек показывает в VR, как выполнить определенную задачу, и алгоритму достаточно одной демонстрации, чтобы выучить ее и далее воспроизвести в реальных условиях.


image


Эх, если бы с людьми было так просто ;)


4.3. Обучение на человеческих предпочтениях


Работа OpenAI и DeepMind на ту же тему. Суть состоит в следующем: у агента есть некая задача, алгоритм предоставляет на суд человеку два возможных варианта решения, и человек указывает, какой лучше. Процесс повторяется итеративно, и алгоритм за 900 бит обратной связи (бинарной разметки) от человека выучился решать задачу.


image


afcd52f83280477483e4cad8a1c7379d.gif


Как всегда, человеку надо быть осторожным и думать, чему он учит машину. Например, оценщик решил, что алгоритм действительно хотел взять объект, но на самом деле тот лишь имитировал это действие.


image


4.4. Движение в сложных окружениях


Еще одно исследование от DeepMind. Чтобы научить робота сложному поведению (ходить/прыгать/…), да еще и похожему на человеческое, нужно сильно заморочиться с выбором функции потерь, которая будет поощрять нужное поведение. Но хотелось бы, чтобы алгоритм сам выучивал сложное поведение, опираясь на простые reward.


Исследователям удалось этого добиться: они научили агентов (эмуляторы тел) совершать сложные действия с помощью конструирования сложной среды с препятствиями и с простым reward за прогресс в передвижении.


image


Впечатляющее видео с результатами. Но оно гораздо забавнее с наложенным звуком ;)




Напоследок дам ссылку на опубликованные недавно алгоритмы обучения RL от OpenAI. Теперь можно использовать более современные решения, чем уже ставший стандартным DQN.


5. Прочее


5.1. Охлаждение дата-центра


В июле 2017-го Google рассказала, что воспользовалась разработками DeepMind в машинном обучении, чтобы сократить энергозатраты своего дата-центра.


На основе информации с тысяч датчиков в дата-центре разработчики Google натренировали ансамбль нейросетей для предсказания PUE (Power Usage Effectiveness) и более эффективного управления дата-центром. Это впечатляющий и значимый пример практического применения ML.


image


5.2. Одна модель на все задачи


Как вы знаете, обученные модели плохо переносятся от задачи к задаче, под каждую задачу приходится обучать/дообучать специфичную модель. Небольшой шаг в сторону универсальности моделей сделала Google Brain в своей статье «One Model To Learn Them All».


Исследователи обучили модель, которая выполняет восемь задач из разных доменов (текст, речь, изображения). Например, перевод с разных языков, парсинг текста, распознавание изображений и звука.


image


Для достижения этой цели сделали сложную архитектуру сети с различными блоками для обработки разных входных данных и генерирования результата. Блоки для encoder/decoder делятся на три типа: сверточные, attention, gated mixture of experts (MoE).


image


image


Основные итоги обучения:


  • получились почти совершенные модели (авторы не делали тонкой настройки гиперпараметров);
  • происходит передача знаний между разными доменами, то есть на задачах с большим количеством данных производительность будет почти такой же. А на маленьких задачах (например, на парсинге) — лучше;
  • блоки, нужные для разных задач, не мешают друг другу и даже иногда помогают, например, MoE — для Imagenet-задачи.


Кстати, эта модель есть в tensor2tensor.


5.3. Обучение на Imagenet за один час


В своем посте сотрудники Facebook рассказали, как их инженеры смогли добиться обучения модели Resnet-50 на Imagenet всего за один час. Правда, для этого потребовался кластер из 256 GPU (Tesla P100).


Для распределенного обучения использовали Gloo и Caffe2. Чтобы процесс шел эффективно, пришлось адаптировать стратегию обучения при огромном батче (8192 элемента): усреднение градиентов, фаза прогрева, специальные learning rate и тому подобное. Подробнее в статье.


В итоге удалось добиться эффективности 90% при масштабировании от 8 к 256 GPU. Теперь исследователи из Facebook могут экспериментировать еще быстрее, в отличие от простых смертных без такого кластера ;)


6. Новости


6.1. Беспилотные автомобили


Сфера беспилотных автомобилей интенсивно развивается, и машины активно тестируют в боевых условиях. Из относительно недавних событий можно отметить покупку Intel«ом MobilEye, скандал вокруг Uber и украденных экс-сотрудником Google технологий, первую смерть при работе автопилота и многое другое.


Отмечу один момент: Google Waymo запускает бета-программу. Google — пионер в этой области, и предполагается, что их технология очень хороша, ведь машины наездили уже более 3 млн миль.


Также совсем недавно беспилотным автомобилям разрешили колесить по всем штатам США.


6.2. Здравоохранение


Как я уже говорил, современный ML начинает внедряться в медицину. Например, Google сотрудничает с медицинским центром для помощи диагностам.


image


Deepmind создал даже отдельное подразделение.


image


В этом году в рамках Data Science Bowl был проведен конкурс по предсказанию рака легких через год на основе подробных снимков, призовой фонд — один миллион долларов.


6.3. Инвестиции


Сейчас много и усердно инвестируют в ML, как до этого — в BigData.


КНР вкладывает 150 млрд долларов в AI, чтобы стать мировым лидером индустрии.


Для сравнения, в Baidu Research работает 1300 человек, а в том же FAIR (Facebook) — 80. На последнем KDD сотрудники Alibaba рассказывали про свой parameter server KungPeng, который работает на 100 миллиардных выборках при триллионе параметров, что «становится обычной задачей» ©.


image



Делайте выводы, изучайте ML. Так или иначе со временем все разработчики будут использовать машинное обучение, что станет одной из компетенций, как сегодня — умение работать с базами данных.

© Habrahabr.ru